Abstract:
A product identification method and associated system may include providing an identification element that corresponds to a consumable product, the identification element at least one of being portable by a user and being readable by a scanner; and at least one of marking information related to the consumable product on the identification element and storing information related to the consumable product in the identification element. Also, a product identification device may include an identification element, and information related to consumable product which is at least one of marked on the identification element and stored in the identification element.
Abstract:
A portable programming device for electronically programming an electronic tag associated with a module includes a hand-held data receiver containing a communication element adapted to receive data from an electronic tag associated with a module and a data processor having programmed processing instructions. The data processor analyzes data received at the communication element in accordance with programmed processing instructions to produce a processor result based on the received data. The portable programming device also includes a hand-held tag writer comprising a communication element for writing tag content information to a tag memory segment of the electronic tag in response to the processor result.
Abstract:
Programming an electronic monitoring tag attached to a printing apparatus replaceable module includes electronically reading tag identification data from an electronic monitoring tag associated with the replaceable module, and electronically verifying that the tag identification data matches predetermined identification criteria. If the tag identification data matches the predetermined identification criteria, electronically programming the electronic monitoring tag with tag content.
Abstract:
Processing a module packaged within a container involves securely affixing a tag comprising a tag memory and a tag communication element to the container. While the module is enclosed in the container, information pertaining to the module is selectively stored in the tag memory for later readout and processing. A container for enclosing a module includes an electronic tag having a tag memory and a tag communication element. The tag communication element is adapted to receive information from a source, and the tag memory stores that information. While the module is packaged in the container, either first module information or second module information is stored in the tag memory. The module information pertains to the subsequent use of the module. The electronic tag is embedded in the container material, or securely affixed to the container. The electronic tag may span a container opening so that the tag is damaged upon opening the container, providing security against improper re-use.
Abstract:
Aspects for notched gate structure fabrication are described. The notched gate fabrication includes forming spacers of hard mask material on a gate conductor, and utilizing the spacers during etching to form notches in the gate conductor and provide a notched gate structure. In a further aspect, notched gate fabrication includes performing a timed etch of masked gate conductive material to maintain a portion of a gate conductive layer and provide gate structure areas in the gate conductive layer. Anisotropically etching the gate structure areas provides spacers on the gate structure areas. Isotropically etching the portion of the gate conductive layer provides notched gates in the gate structure areas.
Abstract:
The gate structure of the MOSFET of the present invention is formed to have a longer length toward the top of the gate structure such that a spacer having a substantially rectangular shaped is formed at the sidewalls of the gate structure. For fabricating a gate structure of a field effect transistor on a semiconductor substrate, a layer of gate structure material is deposited on the semiconductor substrate. The composition of the layer of gate structure material is adjusted along a depth of the layer of gate structure material for a slower etch rate toward a top of the layer of gate structure material that is further from the semiconductor substrate. The gate structure is then formed by patterning and etching the layer of gate structure material. The slower etch rate toward the top of the layer of gate structure material results in a longer length toward a top of the gate structure that is further from the semiconductor substrate. Spacer dielectric is deposited conformally on exposed surfaces of the gate structure. The spacer dielectric is anisotropically etched such that the spacer dielectric remains on sidewalls of the gate structure. The longer length toward the top of the gate structure results in a substantially rectangular shaped spacer dielectric remaining on the sidewalls of the gate structure. The present invention may be used to particular advantage when the gate structure and the spacer having the rectangular shape are formed as part of a field effect transistor such as a MOSFET.
Abstract:
A suck-back valve selectively actuatable for dispensing liquid in its open condition from an associated liquid storage container, and for avoiding continued presence of excess dispensed liquid about the exit orifice in the closed condition of the valve, is formed at least in part of a spring member and a pin. The spring member includes a distal web that defines a valve seat and a dispensed liquid exit orifice, a proximal web, and a plurality of flexibly elastic bands helically connecting the distal and proximal webs. The pin includes an elongated shaft having a proximal end secured to the proximal web and carrying a substantially hollow frustoconical cone at its distal end. The cone has an outer valving surface for releasable abutment with the valve seat and the shaft has a bore of predetermined cross-sectional extent defined longitudinally along and within the shaft to create a continuous fluid passageway through and along the pin. Dispensed liquid remaining proximate the exit orifice is sucked back into the liquid container through the shaft bore as the valve returns from its open to its closed condition under the return urgency of the elastic bands.
Abstract:
A stored liquid dispensing applicator includes a valving arrangement formed of a valve seat and a spring-driven shuttle that is disposed for axial displacement into and out of valve-defining abutment and engagement with the valve seat. The shuttle is displaceable between distal and proximal limits of travel that include a first position defining the distal limit and a second position proximally spaced from the distal limit and distally spaced from the proximal limit. The valve seat is arranged for contact with the shuttle uninterruptedly between the first and second positions to close the valve, and for spaced apart relation with the shuttle between the second position and the proximal limit of travel to open the valve for dispensing of stored liquid. The first position of the shuttle defines an enhanced second level seal, attainable only during manufacture of the device, that is especially resistant to unintended liquid flow or discharge between the valve seat and shuttle. The spring force distally driving the shuttle is sufficient to return the shuttle, from its proximal limit, only to the second position which defines a first level seal of the valving arrangement effective for preventing unintended releases of stored fluid during and between normal usages of the device.
Abstract:
A method of forming multiple conductive structures in a semiconductor device includes forming spacers adjacent side surfaces of a mask, where the mask and the spacers are formed on a conductive layer. The method also includes etching at least one trench in a portion of the conductive layer not covered by the spacers or the mask. The method may further include depositing a material over the semiconductor device, removing the mask and etching the conductive layer to remove portions of the conductive layer not covered by the spacers or the material, where remaining portions of the conductive layer form the conductive structures.
Abstract:
A lighting conversion apparatus provided which converts a recessed light into a non-recessed light. A threaded electrical contact is designed to screw into the existing socket of a recessed light. The threaded electrical contact is connected to a socket extension, which is in turn connected to a socket extension base. A canopy is attached to the socket extension base, and fixtures extend from the canopy. The socket extension and socket extension base may telescope allow for shortening of the distance between the canopy and the threaded electrical contact. When installed, the canopy may therefore rest flush with the ceiling surrounding the recessed light hole.