摘要:
The techniques described herein provide for correcting projection data that comprises contamination due to source switching in a multi energy scanner. The correction is a multi-neighbor correction. That is, it uses data from at least two other views of an object (e.g., generally a previous view and a subsequent view) to correct a current view of the object. The multi-neighbor correction may use one or more correction factors to determine how much data from the other two views to use to correct the current view. The correction factor(s) are determined based upon a calibration that utilizes image space data and/or projection space data of a phantom. In this way, the correction factor(s) account for source leakage that occurs in multi energy scanners.
摘要:
A method of and a system for variable pitch CT scanning for baggage screening and variable pitch image reconstruction are disclosed. The method comprises decelerating conveyor belt speed when additional time is needed to render a decision on a complex bag; accelerating conveyor belt speed to its normal speed when decisions are reached on undecided bags; generating cone-beam projection data at variable scanning pitch corresponding to variable conveyor belt speed; computing a tilt angle and a distance offset for each tilted slice using the pitch values at which the cone-beam projection data is acquired for that tilted slice; generating fan-beam projection data for each tilted slice using the tilted angle and the distance offset; generating correction projection data to compensate for the error between the source trajectory and the tilted reconstruction plane; generating the corrected fan-beam projection data by adding the correction projection data to the fan-beam projection data; reconstructing tilted slices using the corrected fan-beam projection data; and interpolating the reconstructed tilted slices into axial slices.
摘要:
A method of and a system for identifying objects using histogram segment features from multi-energy CT images are provided. The multi-energy CT images include a CT image, which approximates density measurements of scanned objects, and a Z image, which approximates effective atomic number measurements of scanned objects. The method comprises: computing a density histogram for each potential threat object; smoothing the density histogram using a low-pass filter; identifying peaks in the smoothed density histogram; assigning a segment to each peak; computing histogram segment features for each segment; classifying each potential threat object into a threat or a non-threat using computed features.
摘要:
A method of and a system for splitting a compound object using multi-energy CT data including a density and an atomic number measurements are provided. The method comprises: compound object detection; computing a two-dimensional DZ distribution of a compound object; identifying clusters within the DZ distribution; assigning a component label to each object voxel based on the DZ distribution clusters; and post-processing the set of voxels identified as belonging to each component.
摘要:
A method of and a system for spectral correction in multi-energy computed tomography are provided to correct reconstructed images, including high-energy CT images and Z (effective atomic number) images, for spectral variations, which include time variations on a scanner due to HVPS drift and scanner to scanner variations due to the beamline component differences. The method uses a copper filter mounted on the detector array for tracking the spectral changes. The method comprises: generating copper ratios; computing working air tables; calculating scales and offsets; and correcting high-energy CT images and Z images using calculated scales and offsets. The method further includes an off-line calibration procedure to generate necessary parameters for the online correction.
摘要:
A method of and a system for computing Z (effective atomic number) images from projection data are provided, wherein the projections are acquired using at least two x-ray spectra for a set of scanned objects, including a set of low energy projections and a set of high energy projections; the method comprises decomposing the low energy projections and high energy projections into photoelectric projections, reconstructing the photoelectric projections into photoelectric images, reconstructing one of the two sets of projections into CT images, and computing Z images from the CT images and the photoelectric images with parameters obtained from a calibration procedure.
摘要:
A method of reducing metal artifacts in a computed tomography (CT) system includes: A. generating a preliminary image from input projection data collected by the CT system; B. identifying metal objects in the preliminary image; C. generating secondary projections from the input projection data by removing projections of objects having characteristics that may cause the objects to be altered in a final artifact-corrected image. D. extracting the projections of metal objects identified in step B from the secondary projection data generated in step C. E. generating corrected projections by removing the projections of the metal objects extracted in Step D from the input projection data. F. generating a final image by reconstructing the corrected projections generated in step E and inserting the metal objects identified in Step B into the final image.
摘要:
Monitor detectors can be obstructed by the patient and/or the table, leading to image artifacts in a CT scanner. An algorithm for adaptive monitor correction is therefore provided, in which the algorithm replaces obstructed monitor readings with a value consistent with unobstructed monitor readings for the scan.
摘要:
An apparatus and method for identifying and classifying objects represented in CT data for a region using the shape of the objects are disclosed. An object represented by CT data for a region is identified. Next, a two-dimensional projection of the object along a principal axis of the object is generated. The principal axis can be identified by computing eigenvectors of a covariance matrix of spatial locations of voxels in the CT data that are associated with the object. The smallest eigenvector can be selected as the principal axis of the object along which the two-dimensional projection is generated. The identification of the object can be used in the classification of the object such as by altering one or more discrimination parameters.
摘要:
A method and apparatus for detecting objects in computed tomography (CT) data, including sheet-shaped objects such as sheet explosives can be detected by analyzing a neighborhood of voxels surrounding a test voxel. If the density of the test voxel is sufficiently different from the mean density of the neighboring voxels, then it is concluded that the test voxel is associated with a sheet object. A connectivity process can be applied to voxels to combine them into objects after sheets are detected to prevent sheets from being inadvertently removed from the data by erosion.