NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
    12.
    发明申请
    NONAQUEOUS ELECTROLYTE SECONDARY BATTERY 审中-公开
    非电解电解质二次电池

    公开(公告)号:US20110195309A1

    公开(公告)日:2011-08-11

    申请号:US13023951

    申请日:2011-02-09

    Abstract: A positive electrode active material of a nonaqueous electrolyte secondary battery is improved by using an inexpensive lithium transition metal oxide containing nickel and manganese as main components. Output characteristics of the battery under various temperature conditions are thereby improved, and the battery is suitable as a power supply of a hybrid vehicle. The battery includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a nonaqueous electrolyte prepared by dissolving a solute in a nonaqueous solvent. The positive electrode active material includes positive electrode active material particles composed of a lithium transition metal complex oxide having a layered structure containing nickel and manganese as main components, and at least one niobium-containing material selected from a Li—Nb—O compound and a Li—Ni—Nb—O compound, the at least one niobium-containing material being sintered onto surfaces of the positive electrode active material particles.

    Abstract translation: 通过使用廉价的含有镍和锰的锂过渡金属氧化物作为主要成分,提高了非水电解质二次电池的正极活性物质。 因此,在各种温度条件下的电池的输出特性得到改善,并且电池适合作为混合动力车辆的电源。 该电池包括正极,其包括正极活性物质,负极包括负极活性物质,以及通过将溶质溶解在非水溶剂中制备的非水电解质。 正极活性物质包括由具有镍和锰作为主要成分的层状结构的锂过渡金属复合氧化物构成的正极活性物质粒子,以及选自Li-Nb-O系化合物和 Li-Ni-Nb-O化合物,将至少一种含铌材料烧结在正极活性物质颗粒的表面上。

    METHOD FOR PRODUCING POSITIVE ELECTRODE FOR NON-AQUEOUS ELECTROLYTE SECONDARY CELL AND METHOD FOR PRODUCING NON-AQUEOUS ELECTROLYTE SECONDARY CELL
    13.
    发明申请
    METHOD FOR PRODUCING POSITIVE ELECTRODE FOR NON-AQUEOUS ELECTROLYTE SECONDARY CELL AND METHOD FOR PRODUCING NON-AQUEOUS ELECTROLYTE SECONDARY CELL 失效
    用于生产非水电解质二次电池的正电极的方法和用于生产非水电解质二次电池的方法

    公开(公告)号:US20090119908A1

    公开(公告)日:2009-05-14

    申请号:US12268706

    申请日:2008-11-11

    Abstract: A method for producing with a high yield a high performance non-aqueous electrolyte secondary cell with a reduced cost is provided. The method includes the steps of: a baking step of baking a positive electrode active material precursor containing a lithium source and a nickel source in order to render the positive electrode active material precursor a lithium nickel composite oxide; a measuring step of measuring the amount of carbon dioxide gas occurring when the lithium nickel composite oxide is heated to 200° C. or higher and 1500° C. or lower in an inactive gas atmosphere; a selecting step of selecting a lithium nickel composite oxide satisfying the following formulas: y

    Abstract translation: 提供了一种以高产率生产低成本的高性能非水电解质二次电池的方法。 该方法包括以下步骤:烘焙包含锂源和镍源的正极活性物质前体以使正极活性物质前体成为锂镍复合氧化物的烘烤步骤; 测量在惰性气体气氛中将锂镍复合氧化物加热至200℃以上且1500℃以下时发生的二氧化碳气体量的测定步骤; 选择满足下列公式的锂镍复合氧化物的选择步骤:<?in-line-formula description =“In-line formula”end =“lead”?> y <(0.27x-51)/ 1000000(200 < = x <400)公式1 <?in-line-formula description =“In-line Formulas”end =“tail”?> <?in-line-formula description =“In-line Formulas”end =“lead”? > y <57/1000000(400 <= x <= 1500)公式2 <?in-line-formula description =“In-line Formulas”end =“tail”?>其中x是加热温度(°C) 在测量步骤中,y是在测量步骤中测量的每1g所述锂镍复合氧化物的二氧化碳气体量(摩尔/ g) 以及通过使用主要由选择步骤中选择的锂镍复合氧化物的正极活性物质来完成正极的正极完成步骤。

    METHOD FOR JUDGING QUALITY OF LITHIUM NICKEL COMPOSITE OXIDE AND POSITIVE ELECTRODE USING LITHIUM NICKEL COMOPOSITE OXIDE
    17.
    发明申请
    METHOD FOR JUDGING QUALITY OF LITHIUM NICKEL COMPOSITE OXIDE AND POSITIVE ELECTRODE USING LITHIUM NICKEL COMOPOSITE OXIDE 审中-公开
    使用锂镍硅氧烷氧化物评估镍镍合金氧化物和阳极电极质量的方法

    公开(公告)号:US20120180549A1

    公开(公告)日:2012-07-19

    申请号:US13432797

    申请日:2012-03-28

    Abstract: A positive electrode active material quality judgment method that can easily and accurately judge the quality of a positive electrode active material used in a non-aqueous electrolyte secondary cell without having to complete the positive electrode. The positive electrode active material quality judgment method includes: heating a positive electrode active material mainly made of a lithium nickel composite oxide to a temperature x (° C.) of 200° C. or higher and 1500° C. or lower; measuring the amount of carbon dioxide gas occurring from the heating; and the positive electrode active material as a suitable positive electrode active material when the positive electrode active material satisfies formulas 1 and 2: y

    Abstract translation: 一种正极活性物质评价方法,其能够容易且准确地判断在非水电解质二次电池中使用的正极活性物质的质量,而无需完成正极。 正极活性物质判​​定方法包括:将主要由锂镍复合氧化物形成的正极活性物质加热至200℃以上且1500℃以下的温度x(℃) 测量从加热发生的二氧化碳气体的量; 正极活性物质为正极活性物质时,正极活性物质满足式1和2:y <(0.27x-51)/ 1000000(200&nlE; x <400)式1 y <57/1000000( 400&nlE; x&nlE; 1500)式2其中x是加热温度x(℃),y是在加热到加热时每1g正极活性物质发生的二氧化碳气体量(摩尔/克) 温度x(℃)。

    Method for judging quality of lithium nickel composite oxide and positive electrode using lithium nickel composite oxide
    18.
    发明授权
    Method for judging quality of lithium nickel composite oxide and positive electrode using lithium nickel composite oxide 失效
    使用锂镍复合氧化物判断锂镍复合氧化物和正极的质量的方法

    公开(公告)号:US08166794B2

    公开(公告)日:2012-05-01

    申请号:US12268717

    申请日:2008-11-11

    Abstract: A positive electrode active material quality judgment method that can easily and accurately judge the quality of a positive electrode active material used in a non-aqueous electrolyte secondary cell without having to complete the positive electrode. The positive electrode active material quality judgment method includes: heating a positive electrode active material mainly made of a lithium nickel composite oxide to a temperature x (° C.) of 200° C. or higher and 400° C. or lower; measuring the amount of carbon dioxide gas generated from the heating; and the positive electrode active material as a suitable positive electrode active material when the positive electrode active material satisfies formulas 3 and 4: y

    Abstract translation: 一种正极活性物质评价方法,其能够容易且准确地判断在非水电解质二次电池中使用的正极活性物质的质量,而无需完成正极。 正极活性物质判​​定方法包括:将主要由锂镍复合氧化物形成的正极活性物质加热至200℃以上且400℃以下的温度x(℃) 测量从加热产生的二氧化碳气体的量; 和正极活性物质当正极活性物质满足式3和4时,正极活性物质为:y <(1.31×258)/ 1000000(200&nlE; x <300)式3 y <1.20×225 公式4其中x是加热温度x(℃),y是每1g 1g正极活性物质在加热时产生的二氧化碳气体量(摩尔/克)(g / g) 加热温度x(℃)。

Patent Agency Ranking