Abstract:
Ozonated manganese dioxide is prepared by an ozonation process and utilized as a cathode active material. An ozone containing gas stream contacts manganese dioxide and produces ozonated manganese dioxide with high efficiency. After preparation, ozonated manganese dioxide is stored for a limited time at a low temperature and incorporated into a cathode active material for alkaline batteries.
Abstract:
Electrochemical cell systems are provided. In some implementations, the electrochemical cell system includes a fuel cell and a fuel cartridge connected to the fuel cell. The fuel cell includes (i) a fuel cell housing having a first external surface and a first internal surface defining a first internal volume of the fuel cell housing, and (ii) a cathode, an anode, and an electrolyte disposed within the first internal volume. The fuel cartridge includes (i) a cartridge housing having a second external surface and a second internal surface defining a second internal volume of the cartridge housing, wherein the second internal volume includes a fuel; and (ii) a fuel consuming agent disposed on at least one of the first external surface and the second external surface.
Abstract:
Electrochemical cell systems are provided. In some implementations, the electrochemical cell system includes a fuel cell and a fuel cartridge connected to the fuel cell. The fuel cell includes (i) a fuel cell housing having a first external surface and a first internal surface defining a first internal volume of the fuel cell housing, and (ii) a cathode, an anode. and an electrolyte disposed within the first internal volume. The fuel cartridge includes (F) a cartridge housing having a second external surface and a second internal surface defining a second internal volume of the cartridge housing, wherein the second internal volume includes a fuel; and (ii) a fuel consuming agent disposed on at least one of the first external surface and the second external surface.
Abstract:
Batteries and methods of making batteries are disclosed. In some embodiments, a battery includes a housing, a positive electrode comprising a copper material in the housing, a negative electrode in the housing, a separator between the positive electrode and the negative electrode, and an electrolytic solution comprising soluble aluminum in the housing. A method of making a battery can include providing a positive electrode comprising a copper material into a housing, adding a material comprising aluminum to an electrolytic solution, and adding the electrolytic solution into the housing.
Abstract:
An alkaline battery includes a cathode including a gold salt, an anode including zinc, a separator between the cathode and the anode, and an alkaline electrolyte.
Abstract:
A process for manufacture of manganese dioxide comprising subjecting an aqueous bath comprising manganese sulfate (MnSO4) and sulfuric acid (H2SO4) to electrolysis in a closed cell wherein the electrolysis bath is maintained at an elevated temperature above 110° C., preferably above 115° C. and at superatmospheric pressure. Desirably the bath can be maintained at an elevated temperature between about 115° C. and 155° C. The electrolysis is carried out preferably at elevated current density of between about 12.5 and 37 Amp/sq. ft (135 and 400 Amp/sq. meter) which allows for smaller or fewer electrolysis units. An MnO2 product having a specific surface area (SSA) within desired range of between 18-45 m2/g can be obtained. A doping agent, preferably a soluble titanium dopant is employed to help obtain the desired specific surface area (SSA) of the MnO2 product. The manganese dioxide product in zinc/MnO2 alkaline cells gives excellent service life, particularly in high power application.
Abstract:
The invention is directed to a pressure activated current interrupt assembly for cells, particularly alkaline cells. The current interrupter is located at the closed end of the cell's housing. The current interrupter assembly comprises an electrically insulating member in proximity to the terminal at the closed end of the housing. The insulating member is in physical communication with a deflectable member formed from the cell's housing. When gas pressure within the cell builds up to exceed a predetermined value, the deflectable member deforms causing the insulating member to protrude beyond the extremity of said cell terminal, thereby preventing electrical contact between said terminal and the terminal of another cell or electrical device.
Abstract:
A galvanic cell (10), useful in batteries (50), including a can (12). The can (12) is equipped with a spout (20) to permit controlled cell (10) sealing and sealant (18) overflow (52).