Abstract:
An engine knock control system that can be digitally reconfigured to operate in different knock signal processing modes. The system includes a knock detection circuit that processes an incoming knock signal produced by a vibration or pressure sensor on the engine. The circuit includes a plurality of circuit devices that are capable of being interconnected in different circuit topology configurations to thereby process the knock signal in a selected one of a plurality of different modes. The circuit includes hardware and software for forming a selected interconnection configuration of the circuit devices in response to a coded data signal input to the circuit.
Abstract:
A method and memory are provided for determining a read reference level for a plurality of non-volatile memory cells. The method includes: performing a program operation of the plurality of non-volatile memory cells; determining a program level of a least programmed memory cell of the plurality of memory cells; performing an erase operation of the plurality of non-volatile memory cells; determining an erase level of a least erased memory cell of the plurality of memory cells; determining an operating window between the program level and the erase level; and setting the read reference level to be a predetermined offset from the erase level if the operating window is determined to compare favorably to a predetermined value. The memory includes registers for storing the program level and the erase level.
Abstract:
A target circuit of an electronic device is placed in a suspended mode by disconnecting the target circuit from one or more voltage sources. A refresh controller periodically initiates a refresh operation during the suspended mode by temporarily reconnecting the target circuit to the one or more voltage sources for a duration sufficient to recharge capacitances of the target circuit. The refresh controller terminates the refresh operation by disconnecting the target circuit from the one or more voltage sources, thereby continuing the suspended mode of the electronic device. The refresh controller can employ a Very Low Frequency Oscillator (VLFO) to time the frequency of refresh operations. The VLFO manages the refresh initialization timing based on the voltage across a capacitor that is selectively charged or discharged so as to implement the refresh operation. The refresh controller further can employ a counter to time the duration of the refresh operation.
Abstract:
A charge pump has circuitry and implements a method for monitoring a synchronous load by using a first voltage threshold below a target output voltage and a second voltage threshold above a target output voltage. An output terminal is coupled to the load. Charge is demanded by clocking the load. When the target output voltage passes below the first voltage threshold, a first value representing a present size of a charging capacitance is stored as a stored first value, and a second stored value representing a needed changed size of the charging capacitance is used. The present size of the charging capacitance is changed in response to the passing of the target output voltage below the first voltage threshold. When demand for charge from the load is reduced, a present value is saved and a prior value is restored to change the size of the charging capacitance.
Abstract:
A charge pump charges a first capacitor to a predetermined input voltage using a first switch. The first switch is coupled to a first terminal of the first capacitor for coupling the first terminal to an input terminal that receives the predetermined input voltage. A second switch couples a second terminal of the first capacitor to a reference voltage terminal. Charge is sequentially transferred from the first capacitor to an output capacitance by using the first switch. A portion of charge is sequentially removed from the output capacitance to the input terminal using a third switch and a second capacitor. Configuration logic provides control signals to make one or more of a plurality of charge transfer capacitors switch the same as said first capacitor switches.
Abstract:
A charge pump has circuitry and implements a method for monitoring a synchronous load by using a first voltage threshold below a target output voltage and a second voltage threshold above a target output voltage. An output terminal is coupled to the load. Charge is demanded by clocking the load. When the target output voltage passes below the first voltage threshold, a first value representing a present size of a charging capacitance is stored as a stored first value, and a second stored value representing a needed changed size of the charging capacitance is used. The present size of the charging capacitance is changed in response to the passing of the target output voltage below the first voltage threshold. When demand for charge from the load is reduced, a present value is saved and a prior value is restored to change the size of the charging capacitance.
Abstract:
A level converter comprises first and second latches, and first through fourth transistors. The first latch has first and second power supply terminals, and first and second nodes. The second latch has third and fourth power supply terminals, and third and fourth nodes. The first transistor has a first current electrode coupled to the first node, a control electrode coupled to receive a first bias voltage, and a second current electrode. The second transistor has a first current electrode coupled to the second current electrode of the first transistor, a second current electrode coupled to the third node, and a control electrode coupled to receive a second bias voltage. The third transistor has a first current electrode coupled to the second node, a control electrode coupled to receive the first bias voltage, and a second current electrode. The fourth transistor has a first current electrode coupled to the second current electrode of the third transistor, a control electrode coupled to receive the second bias voltage, and a second current electrode coupled to the fourth node.
Abstract:
A low voltage comparator circuit including a differential amplifier circuit, a double-ended to single-ended conversion circuit, and an inverting amplifier circuit is disclosed. The differential amplifier circuit consists of two identical current paths, each having one upper and one lower MOSFET device connected together in series between supply voltage and ground. Each of two input voltages is applied directly to the gate of the upper MOSFET device in one current path and is also coupled, after being inverted, to the gate of the lower MOSFET device in the opposite current path, respectively.
Abstract:
A method and memory are provided for determining a read reference level for a plurality of non-volatile memory cells. The method includes: performing a program operation of the plurality of non-volatile memory cells; determining a program level of a least programmed memory cell of the plurality of memory cells; performing an erase operation of the plurality of non-volatile memory cells; determining an erase level of a least erased memory cell of the plurality of memory cells; determining an operating window between the program level and the erase level; and setting the read reference level to be a predetermined offset from the erase level if the operating window is determined to compare favorably to a predetermined value. The memory includes registers for storing the program level and the erase level.
Abstract:
A charge-based voltage multiplier device comprising a charge-pump circuit and a charge-pump controller is provided. The charge-pump circuit is configured to multiply an input voltage signal (Vin) into an output voltage signal (Vout), the charge-pump circuit includes a plurality of charge-pump stages, wherein at least one of the charge-pump stages includes a weighted capacitor array of pump cells. The charge-pump controller is configured to provide a pump cell select to selectively control the weighted capacitor array of pump cells of the at least one of the charge-pump stages of the charge-pump circuit.