Abstract:
A system for controlling a temperature of a liquid residing within a tank comprises a temperature sensor, a temperature control element, memory, and logic. The temperature sensor is configured to detect the temperature of the liquid residing within the tank, and the temperature control element is coupled to the tank. The memory stores data indicative of a usage history of the tank, and the logic is configured to automatically control the temperature control element based on the data.
Abstract:
A remotely managed electronic dispensing apparatus having a transmitter for transmitting a detection signal and a receiver for receiving a reflected signal and a communication signal is disclosed. When the detection signal is reflected from an object, the dispensing apparatus opens a valve allowing fluid to flow. The communication signal may contain software update or other information for the dispensing apparatus.
Abstract:
A door closer with a teach mode is disclosed. The door closer that can be self powered and includes a control unit to intelligently control a valve within the door closer to vary the operating characteristics of the door closer as needed. The control unit includes a teach mode that can be invoked at installation time, or any other time, so that appropriate information can be stored in memory regarding an installation configuration, relative jamb position, swing (right or left handed) and other parameters. These values can be accessed by control circuitry in the controller for use in controlling the door closer during operation.
Abstract:
A door closer with a self-powered control unit is disclosed. The control unit for the door closer includes a drive gear configured to rotate in response to movement of a door, and a chain arranged to cooperate with the drive gear to produce linear motion in response to rotation of the drive gear. At least one gear creates rotational motion from the linear motion of the chain to turn a generator and generate electricity to power the control unit. In some embodiments, a set of clutch gears is disposed between the chain and the gear creating the rotational motion from the chain so that only one direction of the rotational motion is transferred to the generator in response to movement of the door in any direction. The control unit can additionally include a power management circuit to store energy from the generator.
Abstract:
A door closer with an automated calibration mode is disclosed. The door closer that can be self powered and includes a control unit to intelligently control a valve within the door closer to vary the operating characteristics of the door closer as needed. The control unit includes a calibration mode that can be invoked to match the control unit to the mechanical door closer assembly. A plurality of positional values being output encoders coupled to an arm of the door closer and the motor for the valve can be determined. The positional values from the encoders and the positions that they indicate can then be stored in a memory within the controller for use during normal operation of the door closer.
Abstract:
A door closer with dynamically adjustable latch region parameters is disclosed. Embodiments of the present invention include a door closer with a control unit to intelligently control a valve to vary the operating characteristics of the door closer as needed. The control unit can repeatedly determine whether a door has reached jamb upon closing. A setting or settings for the latch region of the door can be adjusted when the door does not reach jamb. These adjustments are such that the likelihood of the door reaching jamb upon closing is increased. Jamb successes can also be monitored, so that once there have been enough successful closes, settings can be adjusted to decrease the force on the door so that the latch region parameters are constantly adjusted for changing conditions to achieve closing success with the minimum closing force necessary.
Abstract:
A door closer with a teach mode is disclosed. The door closer that can be self powered and includes a control unit to intelligently control a valve within the door closer to vary the operating characteristics of the door closer as needed. The control unit includes a teach mode that can be invoked at installation time, or any other time, so that appropriate information can be stored in memory regarding an installation configuration, relative jamb position, swing (right or left handed) and other parameters. These values can be accessed by control circuitry in the controller for use in controlling the door closer during operation.
Abstract:
The present disclosure generally pertains to water heating systems capable of detecting for dry fire conditions. A water heating system In accordance with one exemplary embodiment of the present disclosure comprises a controller that determines at least one ambient condition, such as ambient temperature, and that then checks for a dry fire condition based on the ambient condition. For example, the controller may dynamically determine a sampling interval for a dry fire test based on the ambient condition. In another example, the controller may dynamically determine a threshold used for sensing a dry fire condition based on the ambient condition. Various other parameters used for testing for a dry fire condition may be based on the ambient condition in other examples.
Abstract:
A data communication system for facilitating communication between infrared devices having an initiating optical interface port that includes an IR emitter and an optical sensor. A receiving optical interface port includes an active IR emitter that emits a pulse at a predetermined interval and an optical sensor. A software application causes an Attention Signal to be emitted from the initiating IR emitter where the initiating IR emitter is positioned in detection range of the receiving optical sensor. The receiving optical interface port is controlled by a firmware application. The firmware is designed to discontinue the pulse of the active IR emitter upon detection of the Attention Signal. Once the normal pulse cycle is discontinued, the active IR emitter is then employed for transmitting data signals to the initiating optical interface port, thereby establishing an optical link between the initiating optical interface port and the receiving optical interface port. The normal operations of the IR emitter of the receiving optical interface port remain discontinued until communication between the ports is terminated, allowing data signals to be sent to the initiating optical sensor from the active IR emitter.
Abstract:
A system for controlling a temperature of a liquid residing within a tank comprises a tank, a first heating element, a first switch, a temperature-based switch, and logic. The first heating element is mounted on the tank, and the temperature-based switch is coupled to the first heating element and to the first switch. The logic is configured to control a state of the first switch based on a temperature of a liquid residing in the tank.