Abstract:
A substrate structure includes a carrier, a first metal layer, a circuit layer and a dielectric layer. The carrier has a first surface and a second surface. The first metal layer is disposed on the first surface of the carrier. The circuit layer is disposed on the first metal layer. The dielectric layer covers the circuit layer and defines a plurality of openings to expose portions of the circuit layer and portions of the first metal layer.
Abstract:
A semiconductor device package includes a carrier, a first conductive post and a first adhesive layer. The first conductive post is disposed on the carrier. The first conductive post includes a lower surface facing the carrier, an upper surface opposite to the lower surface and a lateral surface extended between the upper surface and the lower surface. The first adhesive layer surrounds a portion of the lateral surface of the first conductive post. The first adhesive layer comprises conductive particles and an adhesive. The first conductive post has a height measured from the upper surface to the lower surface and a width. The height is greater than the width.
Abstract:
A semiconductor device package includes a carrier, a first conductive post and a first adhesive layer. The first conductive post is disposed on the carrier. The first conductive post includes a lower surface facing the carrier, an upper surface opposite to the lower surface and a lateral surface extended between the upper surface and the lower surface. The first adhesive layer surrounds a portion of the lateral surface of the first conductive post. The first adhesive layer comprises conductive particles and an adhesive. The first conductive post has a height measured from the upper surface to the lower surface and a width. The height is greater than the width.
Abstract:
A micro-electromechanical systems (MEMS) package structure includes: (1) a circuit layer; (2) a MEMS die with an active surface, wherein the active surface faces the circuit layer; (3) a conductive pillar adjacent to the MEMS die; and (4) a package body encapsulating the MEMS die and the conductive pillar, and exposing a top surface of the conductive pillar.
Abstract:
A semiconductor package structure and a fabrication method thereof are provided. The fabrication method comprises: providing a substrate strip, the substrate strip comprising a plurality of substrate units which comprise a substrate unit; disposing a plurality of chips on the plurality of substrate units; disposing a packaging encapsulant on the substrate strip to encapsulate the chips; forming a warp-resistant layer on a top surface of the packaging encapsulant; and dividing the substrate strip to separate the plurality of substrate units to further fabricate a plurality of semiconductor package structures which comprise a semiconductor package structure comprising the substrate unit, wherein the warp-resistant layer is formed of a selected material with a selected thickness to make a variation of warpage of the semiconductor package structure at a temperature between 25° C. and 260° C. to be smaller than 560 μm.
Abstract:
The present disclosure relates to a semiconductor substrate structure, semiconductor package and method of manufacturing the same. The semiconductor substrate structure includes a conductive structure, a dielectric structure and a metal bump. The conductive structure has a first conductive surface and a second conductive surface. The dielectric structure has a first dielectric surface and a second dielectric surface. The first conductive surface does not protrude from the first dielectric surface. The second conductive surface is recessed from the second dielectric surface. The metal bump is disposed in a dielectric opening of the dielectric structure, and is physically and electrically connected to the second conductive surface. The metal bump has a concave surface.
Abstract:
A semiconductor package structure and a fabrication method thereof are provided. The fabrication method comprises: providing a substrate strip, the substrate strip comprising a plurality of substrate units; disposing a plurality of chips on the plurality of substrate units; disposing a packaging encapsulant on the substrate strip to encapsulate the chips; forming a warp-resistant layer on a top surface of the packaging encapsulant; and dividing the substrate strip to separate the plurality of substrate units to further fabricate a plurality of semiconductor package structures, wherein the warp-resistant layer is formed of a selected material with a selected thickness to make a variation of warpage of the semiconductor package structure at a temperature between 25° C. and 260° C. to be smaller than 560 μm.