Abstract:
A housing for an electronic device, including an aluminum layer enclosing a volume that includes a radio-frequency (RF) antenna is provided. The housing includes a window aligned with the RF antenna; the window including a non-conductive material filling a cavity in the aluminum layer; and a thin aluminum oxide layer adjacent to the aluminum layer and to the non-conductive material; wherein the non-conductive material and the thin aluminum oxide layer form an RF-transparent path through the window. A housing for an electronic device including an integrated RF-antenna is also provided. A method of manufacturing a housing for an electronic device as described above is provided.
Abstract:
The embodiments described herein relate to anodic films and methods for forming anodic films. The methods described can be used to form anodic films that have a white appearance. Methods involve positioning reflective particles on or within a substrate prior to or during an anodizing process. The reflective particles are positioned within the metal oxide of the resultant anodic film but substantially outside the pores of the anodic film. The reflective particles scatter incident light giving the resultant anodic film a white appearance.
Abstract:
Embodiments are described herein in the context of housings for electronic devices. In one embodiment, a housing can make use of an outer member, which can be formed of glass. The outer member can be secured with respect to other portions of the housing for the electronic device. The output member can also be protected at its edges by a protective side member. Still further, one or more antenna can be provided at least partially internal to the protective side member. The electronic devices can be portable and in some cases handheld.
Abstract:
A system such as a vehicle, building, or electronic device system may have a support structure with one or more windows. The support structure and window may separate an interior region within the system from a surrounding exterior region. Control circuitry may receive input such as user input and may adjust an adjustable layer in the window based on the input. The adjustable layer may have a polymer matrix layer with embedded cells. The cells may include intermixed guest-host liquid crystal cells and liquid crystal cells. The guest-host liquid crystal cells and liquid crystal cells may have different liquid crystal materials and/or different sizes that allow the guest-host liquid crystal cells and liquid crystal cells to electrically switch states at different respective threshold voltages. Based on the user input or other input the control circuitry can adjust a drive signal across the adjustable layer to change light transmittance and haze.
Abstract:
The embodiments described herein relate to forming anodized films that have a white appearance. In some embodiments, an anodized film having pores with light diffusing pore walls created by varying the current density during an anodizing process is described. In some embodiments, an anodized film having light diffusing micro-cracks created by a laser cracking procedure is described. In some embodiments, a sputtered layer of light diffusing aluminum is provided below an anodized film. In some embodiments, light diffusing particles are infused within openings of an anodized layer.
Abstract:
An electronic device includes one or more screens, multiple screen protectors moveable between a retracted position and extended position where they extend above the screen to create a gap, and one or more sensors. When the sensor detects a drop event, the screen protectors move from the retracted to extended position, functioning as a shock absorber and preventing the screen from connecting with a surface that the electronic device contacts. In some implementations, the screen protectors may be multiple tabs that may be moved between the retracted and extended positions by one or more motors and/or other actuators coupled to one or more pinions. Such tabs may be formed of various flexible and/or rigid materials such as plastic, plastic film, polyethylene terephthalate or other polymers, metal, thin film metal, combinations thereof, and/or other such materials.
Abstract:
A patch for a device in an electronic housing including an aluminum layer having a threshold thickness, a non-conductive layer on a first side of the aluminum layer, and a radio-frequency (RF) transparent layer on a second side of the aluminum layer is provided. A method for manufacturing an antenna window including a patch as above is also provided, the method including determining a thickness of the aluminum layer adjacent to an anodized aluminum layer. A method for manufacturing an antenna window including coating an aluminum layer having a threshold thickness on a radio-frequency (RF) transparent layer to form an RF transparent laminate is also provided. A method for manufacturing an antenna window including removing a thickness of aluminum is also provided. A method for manufacturing an antenna window including disposing a mask on an aluminum substrate and anodizing the aluminum substrate to a selected thickness is also provided.
Abstract:
An electronic device includes one or more screens, multiple screen protectors moveable between a retracted position and extended position where they extend above the screen to create a gap, and one or more sensors. When the sensor detects a drop event, the screen protectors move from the retracted to extended position, functioning as a shock absorber and preventing the screen from connecting with a surface that the electronic device contacts. In some implementations, the screen protectors may be multiple tabs that may be moved between the retracted and extended positions by one or more motors and/or other actuators coupled to one or more pinions. Such tabs may be formed of various flexible and/or rigid materials such as plastic, plastic film, polyethylene terephthalate or other polymers, metal, thin film metal, combinations thereof, and/or other such materials.
Abstract:
The embodiments described herein relate to forming anodized films that have a white appearance. In some embodiments, an anodized film having pores with light diffusing pore walls created by varying the current density during an anodizing process is described. In some embodiments, an anodized film having light diffusing micro-cracks created by a laser cracking procedure is described. In some embodiments, a sputtered layer of light diffusing aluminum is provided below an anodized film. In some embodiments, light diffusing particles are infused within openings of an anodized layer.
Abstract:
A portable electronic device may have a clip. The clip may be mounted to a housing using hinge structures. The hinge structures may bias the clip towards a closed position. The clip may be opened to attach the portable electronic device to an object. When in the closed position, the clip may lie flush with the exterior of the device housing. Clip biasing may be provided using a torsion spring, a coil spring, a ribbon spring, a clip with built-in biasing, a tension spring, or a compression spring. A coupling mechanism may be used to attach the clip to the housing. The coupling mechanism may include a ratcheting rotatable mechanism, a fixed attachment structure, a flexible attachment structure, a removable structure, or a structure that includes a spring bias adjustment mechanism. The device may have a button with a touch sensor array.