Abstract:
This disclosure describes features and methods of formation of a data port for a portable electronic device. The portable electronic device includes a device housing having a wall defining a data port opening. An anchoring feature is formed along a portion of the wall defining the data port opening. A structural support member is positioned within the data port opening and reinforces the data port opening. A polymer material fills a gap between the structural support member and a portion of the wall defining the data port opening. The polymer material engages the anchoring feature to retain the structural support member within the data port opening.
Abstract:
A device includes a display and a housing. The housing surrounds the display and has four corners defining portions of an exterior surface of the device. The housing includes a first housing segment defining at least part of a first corner of the four corners and configured to operate as an antenna; a second housing segment defining at least part of a second corner of the four corners; and a third housing segment defining at least part of a third corner of the four corners. The third corner forms part of the housing diagonally opposite the second corner. The housing further includes a non-conductive housing component that structurally couples the first housing segment to another portion of the housing.
Abstract:
A housing for an electronic device, including an aluminum layer enclosing a volume that includes a radio-frequency (RF) antenna is provided. The housing includes a window aligned with the RF antenna; the window including a non-conductive material filling a cavity in the aluminum layer; and a thin aluminum oxide layer adjacent to the aluminum layer and to the non-conductive material; wherein the non-conductive material and the thin aluminum oxide layer form an RF-transparent path through the window. A housing for an electronic device including an integrated RF-antenna is also provided. A method of manufacturing a housing for an electronic device as described above is provided.
Abstract:
A metal matrix composite using as one of the components a precious metal is described. In one embodiment, the precious metal takes the form of gold and the metal matrix composite has a gold mass fraction in accordance with 18 k. The metal matrix composite can be formed by blending a precious metal (e.g., gold) powder and a ceramic powder, forming a mixture that is then compressed within a die having a near net shape of the metal matrix composite. The compressed mixture in the die is then heated to sinter the precious metal and ceramic powder. Other techniques for forming the precious metal matrix composite using HIP, and a diamond powder are also disclosed.
Abstract:
The described embodiments relate generally to cosmetic surfaces and associated treatments to form cosmetic surfaces. Cosmetic surface treatments as described herein both increase durability and decrease the appearance of physical damage through implementation of an intermediate barrier layer having a first physical attribute (e.g., color of barrier layer) of a predetermined relationship with a second physical attribute of a second layer (e.g., color of a cosmetic layer). The intermediate barrier layer separates the second layer (e.g., a cosmetic or external layer) from internal material supporting both. The first physical attribute may be chosen to be of a similar appearance to the second physical attribute (e.g., matching and/or somewhat closely matching in color) such that physical damage to the cosmetic layer is made less visible.
Abstract:
A device includes a display and a housing. The housing surrounds the display and has four corners defining portions of an exterior surface of the device. The housing includes a first housing segment defining at least part of a first corner of the four corners and configured to operate as an antenna; a second housing segment defining at least part of a second corner of the four corners; and a third housing segment defining at least part of a third corner of the four corners. The third corner forms part of the housing diagonally opposite the second corner. The housing further includes a non-conductive housing component that structurally couples the first housing segment to another portion of the housing.
Abstract:
A shield assembly can enclose an electronic component in a chamber of a mobile communication device. The shield assembly can include a chassis having a slot and a conductive rail adjacent to the slot. A covering can be mounted over the electronic component and coupled to the chassis via a spring contact disposed in the slot. The covering can include a shield element configured to cover a chamber enclosing the electronic component. The covering can further include a first tab connected to the shield element, and a second tab connected to the shield element and spaced apart from the first tab by a gap. A spring contact can be disposed in the gap and electrically connected to the shield element via at least one of the first tab and the second tab.
Abstract:
An electronic device having a unitary housing is disclosed. The device can include a first housing component having an open cavity, an internal electronic part disposed within the cavity, a second housing component disposed across the cavity, and a support feature disposed within the cavity and arranged to support the second housing component. The first housing component can be formed from metal, while the second housing component can be formed from a plurality of laminated foil metal layers. The second housing component can be attached to the first housing component via one or more ultrasonic welds, such that a fully enclosed housing is created. The fully enclosed housing can be hermetically sealed, and the outside surfaces thereof can be machined or otherwise finished after the ultrasonic welding.