Abstract:
The present invention provides a process for preparing 2,3,3,3-tetrafluoropropene from 1,1,1,2,3-pentachloropropane and/or 1,1,2,2,3-pentachloropropane, comprising the following steps: (a) catalytic reaction of 1,1,1,2,3-pentachloropropane and/or 1,1,2,2,3-pentachloropropane with HF into a reaction mixture comprising HCl, 2-chloro-3,3,3-trifluoropropene, 2,3,3,3-tetrafluoropropene, unreacted HF, and optionally 1,1,1,2,2-pentafluoropropane; (b) separating the reaction mixture into a first stream comprising HCl and 2,3,3,3-tetrafluoropropene and a second stream comprising HF, 2-chloro-3,3,3-trifluoropropene and optionally 1,1,1,2,2-pentafluoropropane; (c) catalytic reaction of the second stream into a reaction mixture comprising 2,3,3,3-tetrafluoropropene, HCl, unreacted 2-chloro-3,3,3-trifluoropropene, unreacted HF and optionally 1,1,1,2,2-pentafluoropropane and (d) feeding the reaction mixture of step (c) directly without separation to step (a).
Abstract:
The present invention provides a process of catalytic fluorination in gas phase of product 1,1,1,2,3-pentachloropropane or/and 1,1,2,2,3-pentachloropropane into product 2-chloro-3,3,3-trifluoropropene in presence of a catalyst and oxygen.
Abstract:
A subject-matter of the invention is a process for the preparation of 2,3,3,3-tetrafluoro-1-propene which comprises the following stages: (i) hydrogenation of hexafluoropropylene to give 1,1,1,2,3,3-hexafluoropropane; (ii) dehydrofluorination of the 1,1,1,2,3,3-hexafluoropropane obtained in the preceding stage to give 1,2,3,3,3-pentafluoro-1-propene; (iii) hydrogenation of the 1,2,3,3,3-pentafluoro-1-propene obtained in the preceding stage to give 1,1,1,2,3-pentafluoropropane; and (iv) dehydrofluorination of the 1,1,1,2,3-pentafluoropropane obtained in the preceding stage to give 2,3,3,3-tetrafluoro-1-propene. Stages (ii) and (iv) are carried out using a water and potassium hydroxide mixture with the potassium hydroxide representing between 58 and 86% by weight of the mixture and at a temperature of between 110 and 180° C.
Abstract:
A composition including the compound HFO-1234yf and at least one other, additional, compound selected from HCFC-240db, HCFO-1233xf, HCFC-243db, HCFO-1233zd, HCC-40, HCFC-114a, HCFC-115, HCFC-122, HCFC-23, HCFC-124, HCFC-124a, HFC-125, HCFC-133a, HCFC-142, HCFC-143, HFC-52a, HCFC-243ab, HCFC-244eb, HFC-281ea, HCO-1110, HCFO-1111, HCFO-1113, HCFO-1223xd, and HCFO-1224xe. A composition including the compound HFO-1234yf and at least two compounds selected from HFO-1234ze, HFC-245cb, HFC-134a, HCFC-115, HFC-152a, HCC-40 and HFO-1243zf.
Abstract:
The present invention relates to a method for producing high-purity 1,1,1,2,3,3-hexafluoropropane and a composition containing mainly 1,1,1,2,3,3-hexafluoropropane, suitable for use as a cleaning agent in the semiconductor industry.
Abstract:
The present invention relates to a process for producing 2-chloro-3,3,3-trifluoropropene, comprising the steps: i) providing a stream A comprising at least one chlorinated compound selected from the group consisting of 2,3-dichloro-1,1,1-trifluoropropane, 1,1,1,2,3-pentachloropropane, 1,1,2,3-tetrachloropropene and 2,3,3,3-tetrachloropropene; and ii) in an adiabatic reactor comprising a fixed bed composed of an inlet and an outlet, bringing said stream A into contact, in the presence or absence of a catalyst, with HF in order to produce a stream B comprising 2-chloro-3,3,3-trifluoropropene, characterized in that the temperature at the inlet of the fixed bed of said adiabatic reactor is between 300° C. and 400° C. and the longitudinal temperature difference between the inlet of the fixed bed and the outlet of the fixed bed of said reactor is less than 20° C.
Abstract:
A process for producing 2,3,3,3-tetrafluoropropene comprises the steps: i) in a first adiabatic reactor comprising a fixed bed composed of an inlet and an outlet, bringing 2-chloro-3,3,3-trifluoropropene into contact with hydrofluoric acid in the gas phase in the presence of a catalyst to produce a stream A comprising 2,3,3,3-tetrafluoropropene, HF and unreacted 2-chloro-3,3,3-trifluoropropene; and ii) in a second adiabatic reactor comprising a fixed bed composed of an inlet and an outlet, bringing hydrofluoric acid into contact in the gas phase, optionally in the presence of a catalyst, with at least one chlorinated compound to produce a stream B comprising 2-chloro-3,3,3-trifluoropropene. The stream A obtained in step i) feeds said second reactor. The inlet temperature of the fixed bed of one of said first or second reactors is between 300° C. and 400° C. The longitudinal temperature difference between the inlet and the outlet of the fixed bed in question is less than 20° C.
Abstract:
The present invention relates to a method for storing, in a closed container, a composition comprising 1,1,1,2,3,3-hexafluoropropane in a liquid/gas state composed of a liquid phase and of a gas phase, characterized in that i) a stream comprising 1,1,1,2,3,3-hexafluoropropane is injected into said container, said stream comprising an oxygen concentration of at most 5000 ppm by volume at a temperature of 25° C., and ii) the container is closed after injection of said stream. The present invention also relates to a container for storing 1,1,1,2,3,3-hexafluoropropane.
Abstract:
The present invention relates to a process for the gas-phase production of 2,3,3,3-tetrafluoropropene, comprising the steps: i) providing a composition A comprising 2-chloro-3,3,3-trifluoropropene and/or 2,3-dichloro-1,1,1-trifluoropropane and/or 2-chloro-1,1,1,2-tetrafluoropropane or a composition B comprising 1,1,1,2,2-pentafluoropropane and/or 1,1,1,2,3-pentafluoropropane; ii) placing said composition A in contact with hydrofluoric acid in the presence of a catalytic composition comprising a chromium-based catalyst or placing said composition B in contact with a catalytic composition comprising a chromium-based catalyst to produce a composition C comprising 2,3,3,3-tetrafluoropropene, characterized in that step ii) is performed at a temperature of between 310° C. and 450° C. and in that the temperature of step ii) is controlled so as not to exceed 450° C.; and when said catalyst is deactivated, the temperature of step ii) is increased in increments from 0.5° C. to 20° C. on condition that the temperature does not exceed 450° C.
Abstract:
A process for the production of 2,3,3,3-tetrafluoropropene including the stages: i) in a first reactor, bringing a stream A including 2-chloro-3,3,3-trifluoropropene into contact with hydrofluoric acid in the gas phase in the presence of a catalyst in order to produce a stream B including 2,3,3,3-tetrafluoropropene, HCl, HF and unreacted 2-chloro-3,3,3-trifluoropropene; and ii) in a second reactor, bringing hydrofluoric acid into contact, in the gas phase in the presence or not of a catalyst, with a stream including at least one chlorinated compound selected from the group of 1,1,1,2,3-pentachloropropane, 2,3-dichloro-1,1,1-trifluoropropane, 2,3,3,3-tetrachloropropene and 1,1,2,3-tetrachloropropene, in order to produce a stream C including 2-chloro-3,3,3-trifluoropropene, wherein the stream B obtained in stage i) feeds the second reactor used for stage ii); and wherein the electrical conductivity of the stream A provided in stage i) is less than 15 mS/cm.