Abstract:
A method of producing an organoselenium-based nanocomposite includes acid-treating a mixture containing multi-walled carbon nanotubes (MWCNT) and palm waste with phosphoric acid to form an acid-treated mixture; carbonizing the acid-treated mixture to form a MWCNT/biochar; mixing the MWCNT-biochar with TiO2 nanoparticles to form a TiO2-MWCNT/biochar; chlorinating acyl groups present on the TiO2-MWCNT/biochar to form a chlorinated TiO2-MWCNT/biochar; reacting the chlorinated TiO2-MWCNT/biochar with an organoselenium compound to form a Se—TiO2-MWCNT/biochar.
Abstract:
A method for producing an organohalosilane, the method comprising: reacting an organic compound comprising a halogen-substituted or unsubstituted aromatic compound with a hydridohalosilane mixture comprising at least two different hydridohalosilanes of formula (I) RnSiHmX4-m-n, where each R is independently C1-C14 hydrocarbyl or C1-C14 hologen-substituted hydrocarbyl, X is fluoro, chloro, bromo, or iodo, n is 0, 1, or 2, m is 1, 2, or 3 and m+n is 1, 2, or 3, in the presence of a catalyst comprising one or more of the elements Sc, Y, Ti, Zr, Hf, Nb, B, Al, Ga, In, C, Si, Ge, Sn, or Pb, at a temperature greater than 100° C., and at a pressure of at least 690 kPa, to produce a crude reaction product comprising the organohalosilane, provided that when the at least two different hydridohalosilane comprise a hydridohalosilane of formula (I) where n=0 and m=1 and a hydridohalosilane of formula (I) where n=0 and m=2, the catalyst is a heterogeneous catalyst comprising an oxide of one or more of the elements Sc, Y, Ti, Zr, Hf, B, Al, Ga, In, C, Si, Ge, Sn, or Pb.
Abstract:
One exemplary embodiment of the present disclosure can be a catalyst for catalytic reforming of naphtha. More specifically, the present disclosure relates to a reforming catalyst for the catalytic reforming of gasoline-range hydrocarbons that results in increased aromatics production. The catalyst can have a noble metal including one or more of platinum, palladium, rhodium, ruthenium, osmium, and iridium, one or more alkaline earth metals, and a support.
Abstract:
The present disclosure relates to a composition, wherein the composition is a catalyst comprising support matrix, active metal, promoter metal and halide, wherein the support matrix is additionally subjected to a modifier to obtain a modified support matrix. The catalyst in the reaction reduces the percentage coke formation and provides for an enhanced reformate yield having an increase total aromatic yield and C8 aromatic yield when compared to the known/commercially available catalyst for naphtha reforming process, and also improves the quality of reformate obtained at end of the reaction. The disclosure further relates to process of preparation of the catalyst, the catalyst of the present disclosure derived from the process described, displays lower deactivation during the reaction demonstrating increased stability and reduction in the regeneration frequency and thereby making the catalyst economically feasible.
Abstract:
The present invention discloses processes for alkylating an aromatic compound, such as benzene or toluene, using a chemically-treated solid oxide. Suitable chemically-treated solid oxides include fluorided silica-coated alumina and fluorided-chlorided silica-coated alumina.
Abstract:
An ammonia synthesis catalyst synthesizing ammonia from nitrogen in a presence of moisture is provided. The ammonia synthesis catalysis includes a catalyst particle including an inorganic material that has a photocatalytic function and an inorganic acid. The catalyst particle is preferably an n-type semiconductor and includes oxide material including at least titanium preferably. The inorganic acid preferably corresponds to at least one of perchloric acid, hydrochloric acid, sulfuric acid, and phosphoric acid.
Abstract:
Regenerable aromatization catalysts having high surface area and pore volume, as well as methods for producing these catalysts, are disclosed.
Abstract:
Carbide-derived carbons are provided that have high dynamic loading capacity for high vapor pressure gasses such as H2S, SO2, or NH3. The carbide-derived carbons can have a plurality of metal chloride or metallic nanoparticles entrapped therein. Carbide-derived carbons are provided by extracting a metal from a metal carbide by chlorination of the metal carbide to produce a porous carbon framework having residual metal chloride nanoparticles incorporated therein, and annealing the porous carbon framework with H2 to remove residual chloride by reducing the metal chloride nanoparticles to produce the metallic nanoparticles entrapped within the porous carbon framework. The metals can include Fe, Co, Mo, or a combination thereof. The carbide-derived carbons are provided with an ammonia dynamic loading capacity of 6.9 mmol g−1 to 10 mmol g−1 at a relative humidity of 0% RH to 75% RH.
Abstract:
The invention concerns a process for preparing a chlorine comprising catalyst using one or more metal salts of chloride, hydrochloric acid (HCl), one or more organic chloride compounds, or a combination thereof. The prepared catalyst preferably comprises 0.13-3 weight percent of the element chlorine. The invention further relates to the prepared catalyst and its use.
Abstract:
Methods for the preparation of fluorided-chlorided silica-coated alumina activator-supports are disclosed. These activator-supports can be used in catalyst systems for the production of olefin-based polymers, such as polyethylene and polypropylene.