Abstract:
A method or apparatus that incorporates teachings of the present disclosure may include, for example, a method for adapting media content of a source device for a recipient device. Characteristics of a first environment of a source device and of a second environment of a recipient can be identified. At least one difference between the characteristics of the first environment of the source device and the characteristics of the second environment of the recipient device can be determined. A presentation of media content can be modified according to the at least one difference between the characteristics of the first environment of the source device and the characteristics of the second environment of the recipient device. Other embodiments are disclosed.
Abstract:
A server that incorporates the subject disclosure may perform, for example, operations including monitoring current transport characteristics of an internet protocol network communicatively coupled to the server and to a mobile device. Data packets are transported to the device according to a dynamic adaptive streaming over hypertext transfer protocol. A future transport characteristic of the network is predicted according to the trajectory of the device. A request is received from the device for transmission of a data packet, and a time for fulfilling the request is scheduled according to the current and predicted transport characteristics. The operations further comprise selecting a transmission rate for transmission of the data packet to the mobile device responsive to detecting the time for fulfilling the request. The device performs buffering of the data packet for a future presentation of the media content. Other embodiments are disclosed.
Abstract:
A method or apparatus that incorporates teachings of the present disclosure may include, for example, a method for adapting media content of a source device for a recipient device. Characteristics of a first environment of a source device and of a second environment of a recipient can be identified. At least one difference between the characteristics of the first environment of the source device and the characteristics of the second environment of the recipient device can be determined. A presentation of media content can be modified according to the at least one difference between the characteristics of the first environment of the source device and the characteristics of the second environment of the recipient device. Other embodiments are disclosed.
Abstract:
The present invention relates to a method for a control point of initiating actions on a device in a communication network comprising at least two control points both adapted to control said device. Further, the present invention relates to a method for a device of initiating actions on said device in a communication network comprising at least two control points both adapted to control said device. Further, the present invention relates to a control point of initiating actions on a device in a communication network comprising at least two control point both adapted to control said device. Further, the present invention relates to a device in a communication network comprising at least two control points both adapted to control said device based on action requests received from a control point along with control point identification.
Abstract:
A mobile device that incorporates the subject disclosure may perform, for example, operations including requesting transport characteristics of a network coupled to a server and to the device according to a trajectory of the device. Data packets are transported to the mobile device according to a dynamic adaptive streaming over hypertext transfer protocol. The operations include obtaining the current transport characteristics of the network and predicting a future transport characteristic of the network, according to the trajectory of the device. A time is scheduled for sending a request to the server for transmission over the network of a data packet. The time can be scheduled according to the current and future transport characteristics of the network, to avoid degradation in quality of media content presented by the device. The data packet received responsive to sending the request is buffered for a future presentation of the media content. Other embodiments are disclosed.
Abstract:
A system that incorporates teachings of the present disclosure may include, for example, obtaining first images that are captured by a first camera system at a first location associated with a live presentation by the first user, transmitting first video content representative of the first images over a network for presentation by a group of other processors that are each at one of a group of other locations associated with corresponding other users, receiving second video content representative of second images that are associated with each of the other users, and presenting the second video content in a telepresence configuration that simulates each of the other users being present in an audience at the first location. Other embodiments are disclosed.
Abstract:
A system that incorporates teachings of the present disclosure may include, for example network device having a controller to receive multiple streams of content for portions of a multimedia work, perform a high level analysis for features in each of the streams for the multimedia work, perform a specialized analysis on the portion having a detected general feature to generate a content analysis output, correlate the content analysis output with other content analysis of the multimedia work, and output a weighted content description based on the correlation function. Other embodiments are disclosed.
Abstract:
A method and apparatus incorporates teachings of the present disclosure and may include, for example, a method including detecting at least one of a plurality of sensor data sources for capturing sensory data from a physical environment of the source device, receiving from the at least one of the plurality of sensor data sources sensory information representing the sensory data from the physical environment of the source device, identifying a plurality of characteristics of the physical environment of the source device from the received sensory information, sending to a second device media content and the sensory information representing the plurality of characteristics of the physical environment of the source device. Other embodiments are disclosed.
Abstract:
A method or apparatus for controlling a media device using gestures may include, for example, modifying media content to generate first updated media content according to a comparison of first information descriptive of a first environment of the source device to second information descriptive of a second environment of the recipient device, capturing images of a gesture, identifying a command from the gesture, and modifying the first updated media content to generate second updated media content according to the command. Other embodiments are disclosed.
Abstract:
A system that incorporates teachings of the present disclosure may include, for example, determining a latency area of a network based on latency testing, identifying a configuration of a network route of a telepresence session exchanging media content between media processors of first and second users at first and second locations based on the latency area, determining a first latency associated with a first presentation of the media content at the first location, determining a second latency associated with a second presentation of the media content at the second location, and determining one of a first delay for the first presentation, a second delay for the second presentation or both based on one of the first latency, the second latency or both. Other embodiments are disclosed.