Abstract:
A pixel structure of a display panel includes a gate line, a first data line, a second data line, a first active switching device, a second active switching device, a first pixel electrode and a second pixel electrode. The first pixel electrode is electrically connected to the first active switching device. The first pixel electrode includes a first main electrode disposed adjacent to one side of the first data line, and a second main electrode disposed adjacent to one side of the second data line. The second pixel electrode is electrically connected to the second active switching device. The second pixel electrode is disposed between the first main electrode and the second main electrode of the first pixel electrode.
Abstract:
A liquid crystal display panel includes a first substrate, a second substrate, a liquid crystal layer, a plurality of first regions and a plurality of second regions. The first regions and the second regions are formed on the first substrate and the second substrate. In a narrow viewing mode, the luminous flux of the first regions along a first viewing direction is different from that of the first regions along a second viewing direction opposite to the first viewing direction, and the luminous flux of the second regions along the first viewing direction is substantially different from that of the first regions along the first viewing direction.
Abstract:
A liquid crystal display panel includes first substrate, active switching device, patterned insulating layer, pixel electrode, auxiliary electrode, second substrate, common electrode and liquid crystal molecules. The patterned insulating layer is disposed on the first substrate and includes a plurality of inner insulating branches and slits, and each slit is located between two adjacent inner insulating branches. The pixel electrode is disposed on the patterned insulating layer and electrically connected to the active switching device. The periphery of the pixel electrode overlaps the inner insulating branches. The auxiliary electrode is disposed on the first substrate and at least partially surrounding the pixel electrode. The auxiliary electrode and the pixel electrode are not electrically connected, and the inner insulating branches partially overlap the auxiliary electrode in a vertical projection direction. The common electrode is disposed on the second substrate. The liquid crystal molecules are interposed between the first and second substrates.
Abstract:
A pixel structure of display panel includes a first substrate, a second substrate, a liquid crystal layer, a first pixel electrode, an insulation layer, a second pixel electrode and a common electrode. The first substrate has a plurality of alignment regions. The second substrate and the first substrate are disposed opposite to each other. The first pixel electrode is a patterned electrode, which includes a plurality of branch electrodes disposed in the alignment regions. The insulation layer is disposed between the first pixel electrode and the liquid crystal layer. The second pixel electrode is a patterned electrode disposed in at least one boundary of each of the alignment regions. The common electrode is disposed on the second substrate.
Abstract:
A liquid crystal display panel includes first substrate, active switching device, patterned insulating layer, pixel electrode, auxiliary electrode, second substrate, common electrode and liquid crystal molecules. The patterned insulating layer is disposed on the first substrate and includes a plurality of inner insulating branches and slits, and each slit is located between two adjacent inner insulating branches. The pixel electrode is disposed on the patterned insulating layer and electrically connected to the active switching device. The periphery of the pixel electrode overlaps the inner insulating branches. The auxiliary electrode is disposed on the first substrate and at least partially surrounding the pixel electrode. The auxiliary electrode and the pixel electrode are not electrically connected, and the inner insulating branches partially overlap the auxiliary electrode in a vertical projection direction. The common electrode is disposed on the second substrate. The liquid crystal molecules are interposed between the first and second substrates.
Abstract:
A driving circuit electrically coupled between a first data line and a second data line and between a first scan line and a second scan line. The driving circuit includes a first switch, a second switch, a third switch, a fourth switch, a first sub-capacitor, a second sub-capacitor, a fifth switch, a sixth switch, a first voltage dividing unit and a second voltage dividing unit. The first voltage dividing unit is coupled between a second end of the fifth switch and a reference voltage end. The second voltage dividing unit is coupled between a second end of the sixth switch and the reference voltage end, for redistributing stored electric charges.
Abstract:
A liquid crystal display panel includes a first substrate, a second substrate, a liquid crystal layer, a plurality of first regions and a plurality of second regions. The first regions and the second regions are formed on the first substrate and the second substrate. In a narrow viewing mode, the luminous flux of the first regions along a first viewing direction is different from that of the first regions along a second viewing direction opposite to the first viewing direction, and the luminous flux of the second regions along the first viewing direction is substantially different from that of the first regions along the first viewing direction.
Abstract:
A liquid crystal display panel includes a first substrate, a second substrate, a liquid crystal layer, a plurality of first regions and a plurality of second regions. The first regions and the second regions are formed on the first substrate and the second substrate. In a narrow viewing mode, the luminous flux of the first regions along a first viewing direction is different from that of the first regions along a second viewing direction opposite to the first viewing direction, and the luminous flux of the second regions along the first viewing direction is substantially different from that of the first regions along the first viewing direction.
Abstract:
A pixel unit includes a gate line, a first data line, a second data line, a first active device, and a pixel electrode. The first active device is electrically connected to the gate line and the first or second data line. The pixel electrode is electrically connected to the first active device. The pixel electrode includes a first sub-pixel electrode, a second sub-pixel electrode, and a first connecting electrode. Each of the first sub-pixel electrode and the second sub-pixel electrode includes a trunk electrode, a traverse trunk electrode, and branch electrodes. The first connecting electrode connects the first sub-pixel electrode to the second sub-pixel electrode.
Abstract:
In an exemplary flat display apparatus and control circuit and method for controlling the flat display apparatus, the flat display apparatus includes a plurality of gate driving units, each of which controls the operation of a scan line in the flat display apparatus. The flat display apparatus provides a first gate high level voltage signal and a second gate high level voltage signal to the gate driving units such that the first and second gate high level voltage signals are used as voltage signals transmitted to corresponding scan lines. The first and second gate high level voltage signals respectively include a falling edge with a slope. Duration time of the falling edge of the first gate high level voltage signal is longer than that of the falling edge of the second gate high level voltage signal.