摘要:
An amplifier has an input stage coupled to a current mirror for providing a first control signal. A gain boosting stage has first and second sections, each having first and second inputs and an output. The first input of the first section is coupled to the input stage. The second input of the first section is a first node between a source and a drain of a first pair of series-coupled transistors. The first input of the second section is coupled to the current mirror. The second input of the second section is a second node between a source and a drain of a second pair of series-coupled transistors. A pre-driver stage has inputs coupled to the input stage and the gain boosting stage. The pre-driver stage provides inputs to the gain boosting stage and receives outputs from the gain boosting stage prior to coupling to an output stage.
摘要:
A programmable voltage reference includes a temperature compensated current source and a voltage reference circuit. The temperature compensated current source includes an output configured to provide a reference current. The voltage reference circuit includes an input coupled to the output of the temperature compensated current source and a reference output. The voltage reference circuit includes a self-cascode metal-oxide semiconductor field-effect transistor structure that includes a first device that is diode-connected and operates in a weak inversion saturation region and a second device that operates in a weak inversion triode region. A length of the second device is selectable. The voltage reference circuit is configured to provide a reference voltage on the reference output based on the reference current.
摘要:
A method includes receiving a set of voltages comprising at least a first voltage, a second voltage, and a third voltage and biasing a well of a transistor based on the extreme voltage of the set of voltages. Biasing the well of the transistor can include concurrently providing a first signal and a second signal based on a comparison of the first voltage and the second voltage and selectively coupling the well of the transistor to a source of the extreme voltage of the set of voltages based on the first signal, the second signal, and the third voltage. An electronic device comprises a transistor and a power switching module. The power switching module includes a set of inputs, each input configured to receive a corresponding one of a set of voltages comprising at least a first voltage, a second voltage, and a third voltage, and includes an output coupled to a well of the transistor, the output configured to provide the extreme voltage of the set of voltages.
摘要:
A device having a temperature sensor device is disclosed. The temperature sensor device includes a complementary to absolute temperature (CTAT) module and a reference module. Both the temperature sensor and the reference voltage module provide signals, that vary in a complementary relationship with the variation in temperature. While the signals can be voltages or currents, for purposes of discussion the signals are discussed in terms of voltages herein. The reference module provides a signal that has a relatively small variation with temperature as compared to the variation in a signal provided by the CTAT module. The signals are provided to a comparator, which provides a temperature control signal based on a comparison of the input signals.
摘要:
A programmable temperature sensing circuit includes a comparator, first and second CTAT sensing elements, first and second PTAT reference circuits, and a selection circuit. When a selection signal is a first logic state, an output terminal of the first PTAT reference circuit is coupled to the second CTAT temperature sensing element for providing a first threshold voltage to the second input of the comparator. When the selection signal is a second logic state different from the first logic state, a series-connection of the first PTAT reference circuit and the second PTAT reference circuit are coupled to the second CTAT temperature sensing element for providing a second threshold voltage to the second input of the comparator. The comparator provides an output voltage indication when a voltage provided by the first CTAT sensing element compares favorably with the selected one of the first or second threshold voltages.
摘要:
A method includes driving a current through a touch screen that is based on contact of the touch screen, generating a proportional second current, and detecting contact of the touch screen from the second current. Another method includes providing a touch screen with parallel plates, disabling contact detection when a plate voltage is lower than a threshold voltage, and enabling contact detection when the plate voltage is at least equal to the threshold voltage. A device includes a first node and a second node coupled to a touch screen, a third node, a first current mirror coupled to the second node and the third node configured to generate a current at the third node that is proportional to a second current at the second node, and a detection circuit that provides a signal based on the first current that indicates contact of the touch screen.
摘要:
A voltage reference includes a first cell configured to receive a first proportional to absolute temperature (PTAT) current and a second cell configured to receive a second PTAT current. The first cell includes a diode-connected stack of insulated-gate field-effect transistors (IGFETs). The diode-connected stack of IGFETs includes a first transistor that is configured to be biased in a triode weak inversion region. The second cell includes a diode-connected stack of IGFETs and a serially coupled resistor. A magnitude of the second PTAT current is based on a drain-to-source voltage of the first transistor and a value of the serially coupled resistor. The voltage reference provides a reference voltage at a reference node of the second cell based on the second PTAT current.
摘要:
A process of forming an electronic device can include forming a capacitor dielectric layer over a base region, wherein the base region includes a base semiconductor material, forming a gate dielectric layer over a substrate, forming a capacitor electrode over the capacitor dielectric layer, forming a gate electrode over the gate dielectric layer, and forming an input terminal and an output terminal to the capacitor electrode. The input terminal and the output terminal can be spaced apart from each other and are connected to different components within the electronic device. A filter can include the base region, the capacitor dielectric layer, and the capacitor electrode. A transistor structure can include the gate dielectric layer and the gate electrode. An electronic device can include a low-pass filter and a transistor structure, such as an n-channel transistor or a p-channel transistor.
摘要:
A low voltage detector (100) includes a voltage and current reference circuit (102); a power supply voltage monitor circuit (104), coupled to the voltage and current reference circuit and to a power supply; and a voltage comparator (106), coupled to the voltage and current reference circuit and to the power supply voltage monitor circuit. The voltage and current reference circuit includes a self-cascode MOSFET structure (SCM) (110) that produces a reference voltage. The power supply voltage monitoring circuit includes another SCM (140) that produces a monitor voltage, related to the power supply voltage. The reference voltage and the monitor voltage have a same behavior with changes in temperature, thereby allowing the trip point of the low voltage detector to minimally vary with temperature. The low voltage detector is disposed on an integrated circuit (101), and the transistors of the low voltage detector consist of only CMOS transistors.
摘要:
A low voltage detector (100) includes a voltage and current reference circuit (102); a power supply voltage monitor circuit (104), coupled to the voltage and current reference circuit and to a power supply; and a voltage comparator (106), coupled to the voltage and current reference circuit and to the power supply voltage monitor circuit. The voltage and current reference circuit includes a self-cascode MOSFET structure (SCM) (110) that produces a reference voltage. The power supply voltage monitoring circuit includes another SCM (140) that produces a monitor voltage, related to the power supply voltage. The reference voltage and the monitor voltage have a same behavior with changes in temperature, thereby allowing the trip point of the low voltage detector to minimally vary with temperature. The low voltage detector is disposed on an integrated circuit (101), and the transistors of the low voltage detector consist of only CMOS transistors.