Abstract:
Systems and methods for providing object versioning in a storage system may support the logical deletion of stored objects. In response to a delete operation specifying both a user key and a version identifier, the storage system may permanently delete the specified version of an object having the specified key. In response to a delete operation specifying a user key, but not a version identifier, the storage system may create a delete marker object that does not contain object data, and may generate a new version identifier for the delete marker. The delete marker may be stored as the latest object version of the user key, and may be addressable in the storage system using a composite key comprising the user key and the new version identifier. Subsequent attempts to retrieve the user key without specifying a version identifier may return an error, although the object was not actually deleted.
Abstract:
Systems and methods providing a versioning feature in a storage system may allow the versioning feature to be toggled on and/or off during operation. Access operations targeting data objects stored in the system (e.g., delete and store type operations) may behave differently depending on whether versioning is (or has ever been) enabled for the storage system or a storage bucket thereof, or is not (or has never been) enabled for the storage system or storage bucket. For example, if versioning is off or suspended, a store operation may overwrite existing data. However, if versioning is enabled, a store type operation may create and store a new, unique object. If versioning has never been enabled, a delete operation may delete a stored object. However, if versioning has ever been enabled, a delete operation may create a new, unique delete marker object and may or may not delete any objects or data.
Abstract:
Systems and methods for providing object versioning in a storage system may support the logical deletion of stored objects. In response to a delete operation specifying both a user key and a version identifier, the storage system may permanently delete the specified version of an object having the specified key. In response to a delete operation specifying a user key, but not a version identifier, the storage system may create a delete marker object that does not contain object data, and may generate a new version identifier for the delete marker. The delete marker may be stored as the latest object version of the user key, and may be addressable in the storage system using a composite key comprising the user key and the new version identifier. Subsequent attempts to retrieve the user key without specifying a version identifier may return an error, although the object was not actually deleted.
Abstract:
A distributed storage system may store data object instances in persistent storage and may store keymap information for those data object instances in a distributed hash table on multiple computing nodes. Each data object instance may include a composite key containing a user key. The keymap information for each data object instance may map the user key to a locator and the locator to the data object instance. A request to store or retrieve keymap information for a data object instance may be routed to a particular computing node based on a consistent hashing scheme in which a hash function is applied to a portion of the composite key of the data object instance. Thus, related entries may be clustered on the same computing nodes. The portion of the key to which the hash function is applied may include a pre-determined number of bits or be identified using a delimiter.
Abstract:
Systems and methods for providing object versioning in a storage system may support the logical deletion of stored objects. In response to a delete operation specifying both a user key and a version identifier, the storage system may permanently delete the specified version of an object having the specified key. In response to a delete operation specifying a user key, but not a version identifier, the storage system may create a delete marker object that does not contain object data, and may generate a new version identifier for the delete marker. The delete marker may be stored as the latest object version of the user key, and may be addressable in the storage system using a composite key comprising the user key and the new version identifier. Subsequent attempts to retrieve the user key without specifying a version identifier may return an error, although the object was not actually deleted.
Abstract:
Systems and methods for managing cached information maintained in a distributed storage system are provided. Requests for information within the distributed storage system are directed to specific coordinators. Each coordinator can maintain cached version of information maintained at various information sources within the distributed storage system. To manage the cache, the system can utilize generation identifiers that identify the component within the distributed storage system that last updated information sources. Each coordinator can determine whether cached version of information is valid based on an analysis of generation identifiers.
Abstract:
Systems and methods for providing object versioning in a storage system may support the logical deletion of stored objects. In response to a delete operation specifying both a user key and a version identifier, the storage system may permanently delete the specified version of an object having the specified key. In response to a delete operation specifying a user key, but not a version identifier, the storage system may create a delete marker object that does not contain object data, and may generate a new version identifier for the delete marker. The delete marker may be stored as the latest object version of the user key, and may be addressable in the storage system using a composite key comprising the user key and the new version identifier. Subsequent attempts to retrieve the user key without specifying a version identifier may return an error, although the object was not actually deleted.
Abstract:
A distributed storage system may store data object instances in persistent storage and may store keymap information for those data object instances in a distributed hash table on multiple computing nodes. Each data object instance may include a composite key containing a user key. The keymap information for each data object instance may map the user key to a locator and the locator to the data object instance. A request to store or retrieve keymap information for a data object instance may be routed to a particular computing node based on a consistent hashing scheme in which a hash function is applied to a portion of the composite key of the data object instance. Thus, related entries may be clustered on the same computing nodes. The portion of the key to which the hash function is applied may include a pre-determined number of bits or be identified using a delimiter.
Abstract:
Systems and methods for providing object versioning in a storage system may support the logical deletion of stored objects. In response to a delete operation specifying both a user key and a version identifier, the storage system may permanently delete the specified version of an object having the specified key. In response to a delete operation specifying a user key, but not a version identifier, the storage system may create a delete marker object that does not contain object data, and may generate a new version identifier for the delete marker. The delete marker may be stored as the latest object version of the user key, and may be addressable in the storage system using a composite key comprising the user key and the new version identifier. Subsequent attempts to retrieve the user key without specifying a version identifier may return an error, although the object was not actually deleted.
Abstract:
Systems and methods for providing object versioning in a storage system may support the logical deletion of stored objects. In response to a delete operation specifying both a user key and a version identifier, the storage system may permanently delete the specified version of an object having the specified key. In response to a delete operation specifying a user key, but not a version identifier, the storage system may create a delete marker object that does not contain object data, and may generate a new version identifier for the delete marker. The delete marker may be stored as the latest object version of the user key, and may be addressable in the storage system using a composite key comprising the user key and the new version identifier. Subsequent attempts to retrieve the user key without specifying a version identifier may return an error, although the object was not actually deleted.