Abstract:
Cell stacks are presented that include binders for wet and dry lamination processes. The cell stacks, when laminated, produce battery cells (or portions thereof). The cell stacks include a cathode having a cathode active material disposed on a cathode current collector. The cell stacks also include an anode having an anode active material disposed on an anode current collector. The anode is oriented towards the cathode such that the anode active material faces the cathode active material. A separator is disposed between the cathode active material and the anode active material and comprising a binder comprising a PVdF-HFP copolymer. In certain instances, an electrolyte fluid is in contact with the separator. Methods of laminating the cell stacks are also presented.
Abstract:
Aspects of the present disclosure involve various battery can designs. In general, the battery can design includes two fitted surfaces oriented opposite each other and seam welded together to form an enclosure in which a battery stack is located. To form the enclosure, the two fitted surfaces are welded together along the large perimeter. Other swelling-resisting advantages may also be achieved utilizing the battery can design described herein including, but not limited to, the ability to modify one or more can wall thicknesses to control a pressure applied to the battery stack by the can, overall reduction in wall thickness of the can through the use of stronger materials for the can surfaces, additional supports structures included within the can design, and/or bossing or other localized thinning of surfaces of the can.
Abstract:
Cell stacks are presented that include binders for wet and dry lamination processes. The cell stacks, when laminated, produce battery cells (or portions thereof). The cell stacks include a cathode having a cathode active material disposed on a cathode current collector. The cell stacks also include an anode having an anode active material disposed on an anode current collector. The anode is oriented towards the cathode such that the anode active material faces the cathode active material. A separator is disposed between the cathode active material and the anode active material and comprising a binder comprising a PVdF-HFP copolymer. In certain instances, an electrolyte fluid is in contact with the separator. Methods of laminating the cell stacks are also presented.
Abstract:
Cell stacks are presented that include binders for wet and dry lamination processes. The cell stacks, when laminated, produce battery cells (or portions thereof). The cell stacks include a cathode having a cathode active material disposed on a cathode current collector. The cell stacks also include an anode having an anode active material disposed on an anode current collector. The anode is oriented towards the cathode such that the anode active material faces the cathode active material. A separator is disposed between the cathode active material and the anode active material and comprising a binder comprising a PVdF-HFP copolymer. In certain instances, an electrolyte fluid is in contact with the separator. Methods of laminating the cell stacks are also presented.
Abstract:
Cell stacks are presented that include binders for wet and dry lamination processes. The cell stacks, when laminated, produce battery cells (or portions thereof). The cell stacks include a cathode having a cathode active material disposed on a cathode current collector. The cell stacks also include an anode having an anode active material disposed on an anode current collector. The anode is oriented towards the cathode such that the anode active material faces the cathode active material. A separator is disposed between the cathode active material and the anode active material and comprising a binder comprising a PVdF-HFP copolymer. In certain instances, an electrolyte fluid is in contact with the separator. Methods of laminating the cell stacks are also presented.
Abstract:
Cell stacks are presented that include binders for wet and dry lamination processes. The cell stacks, when laminated, produce battery cells (or portions thereof). The cell stacks include a cathode having a cathode active material disposed on a cathode current collector. The cell stacks also include an anode having an anode active material disposed on an anode current collector. The anode is oriented towards the cathode such that the anode active material faces the cathode active material. A separator is disposed between the cathode active material and the anode active material and comprising a binder comprising a PVdF-HFP copolymer. In certain instances, an electrolyte fluid is in contact with the separator. Methods of laminating the cell stacks are also presented.
Abstract:
An apparatus includes a first electrode, a second electrode, and a porous layer positioned between the first electrode and the second electrode. The porous layer resists dendrite growth from the first electrode through the porous layer to the second electrode. The porous layer includes a plurality of pores sized to permit ionic transport through the porous layer and to resist dendrite growth through the porous layer.
Abstract:
The disclosed embodiments provide a battery cell. The battery cell includes a set of layers which are wound together to form a jelly roll, including a cathode with an active coating, a separator, and an anode with an active coating. The battery cell also includes a pouch enclosing the layers, wherein the pouch is flexible. To increase a current flow in the battery cell, a first set of conductive tabs is coupled to a cathode substrate of the cathode, and a second set of conductive tabs is coupled to an anode substrate of the anode.