摘要:
The disclosed technology relates to an electrical feedthrough for a battery cell. The electrical feedthrough may include a rivet, an outer gasket, an inner gasket, a terminal and an insulator. The rivet compresses the outer gasket, inner gasket, and terminal to create a hermetic seal at an opening through an enclosure of the battery cell. The inner gasket includes a recessed portion for seating of the terminal to prevent rotation of the terminal with respect to the inner gasket, a protrusion for engaging a corresponding notch on the terminal to further prevent rotation of the terminal with respect to the inner gasket, and a mating surface for attaching to the insulator to align and position the insulator within the enclosure. The insulator is positioned between the battery cell and the inner gasket to prevent physical and electrical contact between the set of layers and the feedthrough.
摘要:
The disclosed technology relates to an electrical feedthrough for a cylindrical battery cell. The electrical feedthrough may include an annular channel having an outer sidewall, an inner sidewall, and a base; an insulator formed of glass having an overmold portion; and a pin extending through the insulator and configured to form an external battery terminal. The insulator is bonded to the inner sidewall of the annular channel and a portion of the base of the annular channel. The overmold portion prevents electrical contact between a set of electrodes and the electrode feedthrough.
摘要:
Electrical feedthroughs are presented that are integrated within a wall of a battery housing. In some embodiments, an electrical feedthrough includes a battery housing defining an opening. The electrical feedthrough also includes a collar disposed around the opening and forming a single body with the wall. The electrical feedthrough also includes an electrically-conductive terminal disposed through the collar. The electrical feedthrough additionally includes an electrically-insulating material disposed between the collar and the electrically-conductive terminal and forming a seal therebetween. In some embodiments, the wall has a thickness equal to or less than 1 mm. In some embodiments, the collar protrudes into the battery housing. In other embodiments, the collar protrudes out of the battery housing. In some embodiments, a cross-sectional area of the electrically-conductive terminal is at least 40% of an area bounded by an outer perimeter of the collar. Batteries incorporating the electrical feedthroughs are also presented.
摘要:
The disclosed embodiments relate to the design and manufacture of a battery cell. The battery cell includes a jelly roll containing layers which are wound together, including a cathode with an active coating, a separator, and an anode with an active coating. The battery cell also includes a mechanical structure disposed around a perimeter of the jelly roll to maintain a structural integrity of the jelly roll. Finally, the battery cell includes a pouch enclosing the mechanical structure and the jelly roll, wherein the pouch is flexible.
摘要:
Aspects of the present disclosure involve various battery can designs. In general, the battery can design includes two fitted surfaces oriented opposite each other and seam welded together to form an enclosure in which a battery stack is located. To form the enclosure, the two fitted surfaces are welded together along the large perimeter. Other swelling-resisting advantages may also be achieved utilizing the battery can design described herein including, but not limited to, the ability to modify one or more can wall thicknesses to control a pressure applied to the battery stack by the can, overall reduction in wall thickness of the can through the use of stronger materials for the can surfaces, additional supports structures included within the can design, and/or bossing or other localized thinning of surfaces of the can.
摘要:
Batteries according to embodiments of the present technology may include an electrode stack including a separator positioned between an anode and a cathode. The batteries may include an electrolyte. The batteries may include an enclosure extending about the electrode stack and containing the electrolyte. The enclosure may include a rigid housing defining a volume in which the electrode stack and the electrolyte are contained. The rigid housing may define a flange extending about the rigid housing. The enclosure may include a lid extending across the rigid housing. The lid may be characterized by a length and a width, and the lid may define a protrusion extending beyond the length or width on a side of the lid at a location corresponding to a predetermined strain location.
摘要:
This application relates to a battery system for reducing spacing between components in an electronic device. The battery system includes a housing surrounding an electrode assembly and a connection module. The housing is rigid or semi-rigid and connected to a common ground. The battery system can be positioned in the electronic device to contact components without damaging the components. In some embodiments, the battery system can be used as a structural element in the electronic component.
摘要:
A battery can assembly may include the use of insulating adhesive between the can and cover. Because the cover and can are electrically isolated from each other, the respective battery terminals may be directly coupled thereto, eliminating a feed-through to connect electrodes to positive and negative terminals. Such an assembly can eliminate the need for an electrically insulated feed-through. Additionally, welding between the cover and can, which in some cases may be difficult due to shape, size, and or restricted access, may also be eliminated. This can allow for significant simplification of the battery assembly process.
摘要:
The disclosed embodiments relate to the design and manufacture of a battery cell. The battery cell includes a jelly roll containing layers which are wound together, including a cathode with an active coating, a separator, and an anode with an active coating. The battery cell also includes a mechanical structure disposed around a perimeter of the jelly roll to maintain a structural integrity of the jelly roll. Finally, the battery cell includes a pouch enclosing the mechanical structure and the jelly roll, wherein the pouch is flexible.