Abstract:
Video data with high frame rates may be displayed on devices with limited resources (e.g., decoder and/or display resources). These devices may have their resources devoted to other tasks or may not be capable to display the video data at the high frame rates. The coding method may include coding the frames such that additional droppable frames are included in the encoded video data. The decoding method may include dropping droppable frames before the encoded video data is decoded to reduce the number of frames that will be decoded and displayed. These methods may be applied to video data that has a variable frame rate and may be combined with processing the image sequence for slow motion playback.
Abstract:
Techniques for synchronizing audio and video content for presentation to a user at a same rate are provided. Streams of content from two or more sources of media, each media source having an associated clock, are synchronized by a synchronizing component and processor with respect to a master clock. As well, techniques are provided for ensuring that output devices are synchronized at preview startup. That is, such techniques ensure that the output devices start playing the media at the same time as well as at the same rate.
Abstract:
Techniques are disclosed for selecting frames for decode and display during different playback modes of a media player. Prediction dependencies may be estimated among frames from a sample table of a media item identifying dependency state among frames in the media item. Based on a playback rate of a media player, a collection of frames may be identified from the media item that have presentation times within a display refresh time of the player. A frame may be selected for decode and display during the display refresh time based on the estimated prediction dependencies. The selected frame may be decoded for display during the player display refresh time.
Abstract:
Methods, systems and machine readable storage medium for allowing playback of streaming media at playback rates of other than 1× are described. In one embodiment, a method can determine different sets of I-frames that are available before a display deadline, where each set can have a different cadence, and one of the sets can be selected for download and display to achieve playback at other than 1×. Byte range requests from a client device can be used to retrieve each of the I-frames. Other methods, system and media are also described.
Abstract:
A method is provided through which information about media files embedded in web pages is obtained from a server and analyzed to determine if the media files are playable on a device. This information may be external to the media file or may be a portion of the media file itself. The determination of whether a media file is playable by a device is made based on information obtained from the server without downloading the entirety of the media file.
Abstract:
Methods, systems and machine readable storage medium for allowing playback of streaming media at playback rates of other than 1× are described. In one embodiment, a method can determine different sets of I-frames that are available before a display deadline, where each set can have a different cadence, and one of the sets can be selected for download and display to achieve playback at other than 1×. Byte range requests from a client device can be used to retrieve each of the I-frames. Other methods, system and media are also described.