Abstract:
Battery separators are presented having improved temperature ranges for battery shutdown. The battery separators include a first layer having a first shutdown temperature range, a second layer having a second shutdown temperature range, and a third layer having a third shutdown temperature range. The first shutdown temperature range and the second shutdown temperature range have a first overlap in temperature. The second shutdown temperature range and third shutdown temperature range have a second overlap in temperature. In some embodiments, the second layer is disposed between the first layer and the third layer to create a sandwiched structure.
Abstract:
A battery cell includes a cathode casing forming all or a majority of the external can of the battery cell. The battery further includes an anode tab covering at least a portion of a face of the battery cell and an insulating layer for electrically isolating the anode tab from the cathode casing. A plurality of such battery cells may be arranged within a battery pack in contact with each other, and may be held in compression. A conduction enhancement layer may be applied between the anode tab of a first cell and the cathode casing of a second cell within the battery pack. One or more heat dissipation elements may be arranged within the battery pack, in contact with the battery cells.
Abstract:
Energy storage devices, battery cells, and batteries of the present technology may include a first cell and a second cell disposed adjacent the first cell. The devices may include a stacked current collector coupled between the first cell and the second cell. The current collector may include a grid or matrix, and may include a combination of conductive and insulative materials.
Abstract:
Batteries according to embodiments of the present technology may include a first battery cell including a first current collector. The batteries may include a second battery cell including a second current collector. The second battery cell may be vertically aligned with the first battery cell, and the second current collector may be positioned adjacent the first current collector. The first battery cell and the second battery cell may be electrically coupled together so the first battery cell and the second battery cell transfer current through the cells between the first current collector and the second current collector. The batteries may also include a patterned coupling material disposed between the first battery cell and the second battery cell and joining the first current collector with the second current collector.
Abstract:
A battery cell includes a cathode casing forming all or a majority of the external can of the battery cell. The battery further includes an anode tab covering at least a portion of a face of the battery cell and an insulating layer for electrically isolating the anode tab from the cathode casing. A plurality of such battery cells may be arranged within a battery pack in contact with each other, and may be held in compression. A conduction enhancement layer may be applied between the anode tab of a first cell and the cathode casing of a second cell within the battery pack. One or more heat dissipation elements may be arranged within the battery pack, in contact with the battery cells.
Abstract:
An apparatus includes a first electrode, a second electrode, and a porous layer positioned between the first electrode and the second electrode. The porous layer resists dendrite growth from the first electrode through the porous layer to the second electrode. The porous layer includes a plurality of pores sized to permit ionic transport through the porous layer and to resist dendrite growth through the porous layer.
Abstract:
The disclosed embodiments relate to the manufacture of a battery cell. The battery cell includes a first set of layers including a cathode with an active coating, a separator, and an anode with an active coating. The separator may include a ceramic coating and a binder coating over the ceramic coating. During manufacturing of the battery cell, the layers are stacked, and the binder coating is used to laminate the first set of layers within the first sub-cell by applying at least one of pressure and temperature to the first set of layers. In addition, uniform pressure is applied to the cell stack to laminate the first and second sets of layers.
Abstract:
Energy storage devices, battery cells, and batteries of the present technology may include a first cell and a second cell disposed adjacent the first cell. The devices may include a stacked current collector coupled between the first cell and the second cell. The current collector may include a grid or matrix, and may include a combination of conductive and insulative materials.
Abstract:
A battery includes one or more protection layers, applied to one or more foil layers in the battery, which restrict electronic transport across the protection layer based on exposure to particular physical conditions. The protection layer can change from being an electrically conductive layer to being an electrically insulating layer based on the exposure. The protection layer can include a mixture of materials that change state to electrically insulating states based on exposure to various particular physical conditions. A battery can include multiple protection layers that restrict electronic transport based on exposure to different physical conditions. A protection layer applied to a foil layer that is applied to an electrode restricts electronic transport between the foil layer and the electrode based on exposure to the one or more physical conditions. A protection layer located between separate battery cells can restrict electronic transport between portions of separate battery cells.
Abstract:
The disclosed embodiments relate to the design of a jelly-roll battery comprising an alternating anode and cathode layers coated with intervening separator layers wound into a jelly-roll. The alternating anode and cathode layers are coated with, respectively, an anode active coating and a cathode active coating. A first common notch and a second common notch are formed along at least one side of the jelly-roll. A common cathode tab can be bonded to the cathode tabs within the first common notch, and a common anode tab can be bonded to the anode tabs within the second common notch. The jelly-roll battery also includes a pouch enclosing the jelly-roll. Common anode and cathode tabs can extend through the pouch to provide cathode and anode terminals for the battery cell.