Abstract:
Embodiments of the present disclosure generally relate to an apparatus and a method for cleaning a processing chamber. In one embodiment, a substrate support cover includes a bulk member coated with a fluoride coating. The substrate support cover is placed on a substrate support disposed in the processing chamber during a cleaning process. The fluoride coating does not react with the cleaning species. The substrate support cover protects the substrate support from reacting with the cleaning species, leading to reduced condensation formed on chamber components, which in turn leads to reduced contamination of the substrate in subsequent processes.
Abstract:
Apparatus and methods are provided for reducing cross-contamination between deposition operations during the fabrication of heterojunction cells. An apparatus includes the substrate carrier including a plurality of pockets, and the carrier mask defining the openings that are sized and positioned in correspondence to the pockets of the substrate carrier. The substrate carrier carries a plurality of substrates into an i-layer deposition chamber and a p-layer deposition chamber. The substrate carrier is masked by the carrier mask during deposition of a p-layer. In-situ film mask layer can be used with or without the carrier mask. The in-situ film mask layer is formed of SiN or SiNO and can be deposited over the p-layer. The p-layer is a p-type nanocrystalline SiOx layer formed from a combination of SiH4, B2H6, H2 or CO2. A single substrate carrier can be repeatedly used for sequential deposition of an i-layer and a p-layer without cross contamination.
Abstract:
A substrate carrier having a diamond-like carbon coating disposed thereon is provided. The diamond-like carbon coating may have the property of being substantially resistant to commonly used cleaning processes performed during the fabrication of photovoltaic cells, such as cleaning processes using an NF3 plasma. Additionally, a method of forming a diamond-like carbon coating on a substrate carrier is provided. The method includes positioning a substrate carrier in a processing chamber and forming a diamond-like carbon coating thereon. Forming the diamond-like carbon coating includes flowing a carbon-containing gas into a processing chamber and dissociating the carbon-containing gas. Furthermore, a method of quick removal of diamond-like carbon coatings from processing chamber walls, processing chamber components, substrate carriers, and other objects is provided.
Abstract:
Embodiments of the invention generally relate to methods for fabricating photovoltaic devices, and more particularly to methods for in-situ cleaning of a solar cell substrates. In one embodiment, a method of manufacturing a solar cell device is provided. The method comprises exposing a single or poly crystalline silicon substrate to a wet clean process to clean the surfaces of the crystalline substrate, loading the crystalline silicon substrate into a processing system having a vacuum environment, exposing at least one surface of the crystalline silicon substrate to an in-situ cleaning process in the vacuum environment of the processing system, and forming one or more passivation layers on at least one surface of the crystalline silicon substrate in the processing system.