Abstract:
A method for forming a three-dimensional article through successive fusion of parts of a powder bed comprising: providing a model of the three dimensional article, applying a first powder layer on a work table, directing an energy beam over the work table causing the first powder layer to fuse in selected locations according to the model to form a first cross section of the three-dimensional article, applying a second powder layer on the work table, directing the energy beam over the work table causing the second powder layer to fuse in selected locations according to the model to form a second cross section of the three-dimensional article, wherein the second layer is bonded to the first layer, detecting a local thickness in at least two positions in at least the second powder layer, varying an energy beam parameter depending on the detected local thickness of the second powder layer.
Abstract:
An apparatus for forming at least one three-dimensional article by fusing parts of a powder bed layer-wise. The apparatus comprising a powder distributor and an energy beam for fusing the powder layer. Said powder distributor comprises a first part being an elongated rod provided movable at a predetermined distance above the powder bed and with its central axis in parallel with a top surface of said work table and second part being a metal foil having at least a first and a second opposite edge portions. Said metal foil is provided between said elongated rod and said work table, said first and second opposite edge portions are attached to said elongated rod so that a distance between said first and second edge portions is smaller than the distance between said first and second edge portions of said metal foil when said metal foil is in a flat position.
Abstract:
Various embodiments of the present invention relate to a plasma electron source apparatus. The apparatus comprises a cathode discharge chamber in which a plasma is generated, an exit hole provided in said cathode discharge chamber from which electrons from the plasma are extracted by an accelerating field provided between said cathode discharge chamber and an anode, at least one plasma confinement device, and a switching mechanism for switching the at least one plasma confinement device between a first value allowing for electron extraction from the plasma and a second value prohibiting electron extraction from the plasma. Associated methods are also provided.
Abstract:
A method for detecting defects in three-dimensional articles. Providing a model of said article. Providing a first powder layer on a substrate, directing an energy beam over said substrate causing said first powder layer to fuse in selected locations forming a first cross section of said three-dimensional article, providing a second powder layer on said substrate, directing the energy beam over said substrate causing said second powder layer to fuse in selected locations to form a second cross section of said three-dimensional article. A first and second image of a first and second fusion zone of said first powder layer respectively is captured. Comparing said first and second images with corresponding layers in said model. Detecting a defect in the three-dimensional article if a deviation in said first image with respect to said model is at least partially overlapping a deviation in said second image with respect to said model.
Abstract:
An apparatus for forming a three-dimensional article is provided, comprising means for providing a predetermined amount of powder, a powder distributor, means for directing an energy beam over a first powder layer causing it fuse in selected locations according to a model, a camera for capturing at least one image of a shape of at least one portion of the predetermined amount of powder that has yet to be initially distributed, the at least one image being captured prior to distribution of an entirety of all portions of the predetermined amount of powder over the surface, and means for comparing at least one value of at least one parameter in the image detected with a corresponding reference parameter value, wherein the at least one parameter is associated with the shape of the powder that has yet to be initially distributed.
Abstract:
A method for forming a three-dimensional article, said method comprising the steps of: providing a predetermined amount of powder for forming a first powder layer on a start plate, distributing said predetermined amount of powder with a powder distributor for forming said first powder layer, directing an energy beam over said start plate causing said first powder layer to fuse in selected locations according to a model to form a first cross section of said three-dimensional article. At least one image of the powder to be distributed is captured with a camera at least one time during said distribution of said powder on said start plate for forming said first powder layer and at least one value of at least one parameter in said image detected with said camera is compared with a reference parameter value.
Abstract:
The present invention relates to a method for forming a three-dimensional article through successive fusion of applied powder. Said method comprising the steps of: providing at least one powder hopper comprising powder to be used for forming said three-dimensional article, providing a predetermined amount of powder at a build support, directing an energy beam over said build support causing at least a portion of said powder to sinter and causing at least a portion of said powder to bond to said build support, directing an energy beam over said build support causing said powder to fuse in selected locations according to a model to form a first portion of said three-dimensional article, rotating said build support around an axis of rotation for creating said three-dimensional article, which three-dimensional article is build up layer by layer in a radial direction with respect to said axis of rotation.
Abstract:
The invention concerns a method for producing three-dimensional objects (6) layer by layer using a powdery material (7) which can be solidified by irradiating it with a high-energy beam (4), said method comprising the steps of: applying a first layer of powdery material onto a working area (5); solidifying a part of said first layer by irradiating it with a high-energy beam; and applying a second layer (8) of powdery material onto the first, partly solidified layer. The invention is characterized in that the method comprises the step of: determining a rate at which the temperature of the second layer (8) increases after application onto the first layer. The invention also concerns an apparatus configured to operate according to the above method.
Abstract:
A method for forming a three-dimensional article comprising the steps of: applying a model of the three dimensional article, applying a first powder layer on a work table, directing a first electron beam from a first electron beam source over the work table causing the first powder layer to fuse in first selected locations according to the model to form a first cross section of the three-dimensional article, directing a second electron beam from a second electron beam source over the work table, registering at least one setting of the first electron beam source, registering at least one setting of the second electron beam source, correcting the position of the second electron beam depending on the at least one setting of the first electron beam source and the at least one setting of the second electron beam source.
Abstract:
A method for forming a three-dimensional article through successive fusion of parts of a powder bed, which parts corresponds to successive cross sections of the three-dimensional article, said method comprising the steps of: providing a model of said three dimensional article, providing a first powder layer on a work table, directing a first energy beam from a first energy beam source over said work table causing said first powder layer to fuse in first selected locations according to said model to form a first cross section of said three-dimensional article, directing a second energy beam from a second energy beam source over said work table causing said first powder layer to fuse in second selected locations according to said model to form the first cross section of said three-dimensional article, wherein said first and second locations of said first powder layer are at least partially overlapping each other.