Abstract:
A light emitting apparatus comprising an at least substantially omnidirectional light assembly including an LED-based light source within a light-transmissive envelope. Electronics configured to drive the LED-based light source, the electronics being disposed within a base having a blocking angle no larger than 45°. A plurality of heat dissipation elements (such as fins) in thermal communication with the base and extending adjacent the envelope.
Abstract:
A light emitting apparatus comprising an at least substantially omnidirectional light assembly including an LED-based light source within a light-transmissive envelope. Electronics configured to drive the LED-based light source, the electronics being disposed within a base having a blocking angle no larger than 45°. A plurality of heat dissipation elements (such as fins) in thermal communication with the base and extending adjacent the envelope.
Abstract:
A low watt ceramic metal halide lamp has a body with a discharge chamber disposed therein. First and second hollow legs extend from the discharge chamber and received first and second electrode assemblies, respectively, therethrough with first ends of the electrode assemblies disposed in spaced relation in the discharge chamber. Use of thin legs limits heat flux from the discharge chamber. Preferably, thin legs are defined by a load dissipation factor of the ceramic part being less than 0.065 mm2/watt. In addition, thermal conductance along the leg is controlled via a load dissipation factor of the molybdenum mandrel portion of the electrode assembly being maintained less than 0.0008 mm2/watt.
Abstract:
A low watt ceramic metal halide lamp has a body with a discharge chamber disposed therein. First and second hollow legs extend from the discharge chamber and received first and second electrode assemblies, respectively, therethrough with first ends of the electrode assemblies disposed in spaced relation in the discharge chamber. Use of thin legs limits heat flux from the discharge chamber. Preferably, thin legs are defined by a load dissipation factor of the ceramic part being less than 0.065 mm2/watt. In addition, thermal conductance along the leg is controlled via a load dissipation factor of the molybdenum mandrel portion of the electrode assembly being maintained less than 0.0008 mm2/watt.
Abstract:
A high brightness discharge light source having improved thermal balance characteristics includes a lamp envelope having an arc chamber formed therein and a pair of electrodes extending into opposite ends of the arc chamber so as to be displaced from one another by a distance of no greater than 4 mm. A fill disposed within the arc chamber is excited to a discharge state upon the introduction of an excitation energy coupled through the pair of electrodes. The light source is operated vertically so that one of the electrodes is disposed at the top region and the other electrode is disposed at the bottom region of the arc chamber. The arc chamber is formed having a diameter dimension which is just larger than the spacing between the electrodes, and a height dimension which is approximately twice the diameter dimension. The diameter dimension is substantially uniform along the length of the arc chamber. The uniform diameter characteristic is effective so that the thermal operating properties associated with the discharge state are substantially equally distributed from the top to the bottom regions of the arc chamber thereby resulting in extending the life of this light source to approximately 6000 hours.
Abstract:
An optical couplers and optical coupling system for coupling a source of non-coherent light to a light distribution harness, wherein the couplers are polygonal in cross section to increase light mixing, and the coupler has inlet and outlet arms, and an intermediate bend region configured to achieve compactness and minimal light loss through the bend region. In one embodiment, the bend region is an integral part of the coupler, with the inlet arm having a different cross-sectional dimension from the outlet art in such manner that substantially all light directed from the inlet portion to the bend portion reaches the outlet arm portion, and light rays parallel to the inlet axis are reflected in the bend portion to be directed substantially parallel to the outlet axis. In a second embodiment, the bend region comprises a prism having a pair of parallel spaced surfaces, and inlet, outlet, and third surfaces that are non-parallel to the spaced surfaces. The inlet arm projects from the inlet surface, and the outlet arm projects from the outlet surface. One of the inlet and outlet surfaces forms a first interface with a first material having an index of refraction different from that of the prism, so that light rays within the prism totally internally reflect from the first interface.
Abstract:
The invention relates to an electrode-inlead assembly for electrical lamps which comprises a lead-in-wire connected to a foil made of refractory metal and the foil is connected to a shank made of refractory metal and supporting the electrode.The object of the invention is, that the shank is made of two parallel rods which are joined by their one end portions, and their opposite end portions are welded to the foil, so that the foil is sandwiched between the rods.
Abstract:
A light emitting apparatus comprising an at least substantially omnidirectional light assembly including an LED-based light source within a light-transmissive envelope. Electronics configured to drive the LED-based light source, the electronics being disposed within a base having a blocking angle no larger than 45°. A plurality of heat dissipation elements (such as fins) in thermal communication with the base and extending adjacent the envelope.
Abstract:
A light emitting apparatus comprises: an LED-based light source; a spherical, spheroidal, or toroidal diffuser generating a Lambertian light intensity distribution output at any point on the diffuser surface responsive to illumination inside the diffuser; and a base including a base connector. The LED based light source, the diffuser, and the base are secured together as a unitary LED lamp installable in a lighting socket by connecting the base connector with the lighting socket. The diffuser is shaped and arranged respective to the LED based light source in the unitary LED lamp to conform with an isolux surface of the LED based light source. The base is operatively connected with the LED based light source in the unitary LED lamp to electrically power the LED based light source using electrical power received at the base connector.