Abstract:
A light emitting apparatus comprises: an LED-based light source; a spherical, spheroidal, or toroidal diffuser generating a Lambertian light intensity distribution output at any point on the diffuser surface responsive to illumination inside the diffuser; and a base including a base connector. The LED based light source, the diffuser, and the base are secured together as a unitary LED lamp installable in a lighting socket by connecting the base connector with the lighting socket. The diffuser is shaped and arranged respective to the LED based light source in the unitary LED lamp to conform with an isolux surface of the LED based light source. The base is operatively connected with the LED based light source in the unitary LED lamp to electrically power the LED based light source using electrical power received at the base connector.
Abstract:
A light emitting apparatus comprises: an LED-based light source; a spherical, spheroidal, or toroidal diffuser generating a Lambertian light intensity distribution output at any point on the diffuser surface responsive to illumination inside the diffuser; and a base including a base connector. The LED based light source, the diffuser, and the base are secured together as a unitary LED lamp installable in a lighting socket by connecting the base connector with the lighting socket. The diffuser is shaped and arranged respective to the LED based light source in the unitary LED lamp to conform with an isolux surface of the LED based light source. The base is operatively connected with the LED based light source in the unitary LED lamp to electrically power the LED based light source using electrical power received at the base connector.
Abstract:
A disclosed optical testing apparatus comprises: a plurality of optical fibers, each optical fiber having a collection end in optical communication with an output end; and a support member supporting the collection ends of the optical fibers so as to simultaneously view an examination region from different angles. A disclosed optical testing apparatus comprises a plurality of optical fibers having collection ends arranged to simultaneously view an examination region from a plurality of different angles. A disclosed optical testing apparatus comprises a plurality of optical fibers, each optical fiber having a collection end, the collection ends of the optical fibers arranged in fixed spatial relationship respective to one another to simultaneously view an examination region from different angles.
Abstract:
A light emitting apparatus comprises: an LED-based light source; a spherical, spheroidal, or toroidal diffuser generating a Lambertian light intensity distribution output at any point on the diffuser surface responsive to illumination inside the diffuser; and a base including a base connector. The LED based light source, the diffuser, and the base are secured together as a unitary LED lamp installable in a lighting socket by connecting the base connector with the lighting socket. The diffuser is shaped and arranged respective to the LED based light source in the unitary LED lamp to conform with an isolux surface of the LED based light source. The base is operatively connected with the LED based light source in the unitary LED lamp to electrically power the LED based light source using electrical power received at the base connector.
Abstract:
Provided are a lighting device, a backlighting device, and a display device that comprise a radiation source such as LED and wavelength converting members comprising phosphors. In one embodiment, self-absorption within the devices is suppressed or reduced by placing a selective reflector between two wavelength converting members, and the wavelength converting member emitting light with longer peak wavelength is substantially isolated from the irradiation of another wavelength converting member emitting light with shorter peak wavelength. In other embodiments, the wavelength converting members are arranged in strip configuration; or in adjacent hexagons configuration.
Abstract:
In a method for fabricating a flip-chip light emitting diode device, epitaxial layers (14, 114) are deposited on a growth substrate (16, 116) to produce an epitaxial wafer. A plurality of light emitting diode devices are fabricated on the epitaxial wafer. The epitaxial wafer is diced to generate a device die (10, 110). The device die (10, 110) is flip chip bonded to a mount (12, 112). The flip chip bonding includes securing the device die (10, 110) to the mount (12, 112) by bonding at least one electrode (20, 22, 120) of the device die (10, 110) to at least one bonding pad (26, 28, 126) of the mount (12, 112). Subsequent to the flip chip bonding, a thickness of the growth substrate (16, 116) of the device die (10, 110) is reduced.
Abstract:
A light emitting package comprising a support hosting at least one light emitting diode. A light transmissive dome comprised of a silicone including a phosphor material positioned to receive light emitted by the diode. A glass cap overlies said dome.
Abstract:
A light emitting package comprising a support hosting at least one light emitting diode. A light transmissive dome comprised of a silicone including a phosphor material positioned to receive light emitted by the diode. A glass cap overlies said dome
Abstract:
Systems and methods are described that facilitate providing a user with interchangeable phosphor-coated shells, or envelopes, for generate different shades and intensities of white light from a single UV light source. The interchangeability of the low-cost phosphor-coated envelopes permits the use of a single light engine, which is the more expensive component of a solid state lamp. In this manner, consumers are provided with a greater number of lighting choices at low cost than can be achieved using conventional single-envelope lamps.
Abstract:
A light source (10) comprises a light engine (16), a base (24), a power conversion circuit (30) and an enclosure (22). The light engine (16) comprises at least one LED (12) disposed on a platform (14). The platform (14) is adapted to directly mate with the base (24) which a standard incandescent bulb light base. Phosphor (44) receives the light generated by the at least one LED (12) and converts it to visible light. The enclosure (22) has a shape of a standard incandescent lamp.