Abstract:
An electrolyte composition (A) containing (i) at least one aprotic organic solvent; (ii) at least one conducting salt; (iii) at least one compound of formula (I) wherein X1 and X2 are independently from each other selected from N(R1), P(R1), O, and S, Y1 and Y2 are independently from each other selected from (O), (S), (PR2) and (NR2); and electrochemical cells containing electrolyte composition (A).
Abstract:
Articles, compositions, and methods involving ionically conductive compounds are provided. The disclosed ionically conductive compounds may be incorporated into an electrochemical cell (e.g., a lithium-sulfur electrochemical cell, a lithium-ion electrochemical cell, an intercalated-cathode based electrochemical cell) as, for example, a protective layer for an electrode, a solid electrolyte layer, and/or any other appropriate component within the electrochemical cell. In certain embodiments, electrode structures and/or methods for making electrode structures including a layer comprising an ionically conductive compound described herein are provided.
Abstract:
The present invention relates to an electrolyte solution comprising at least one solvent as component A, at least one electrolyte as component B and from 0.1 to 20% by weight, based on the total electrolyte solution, of at least one heteroaromatic compound of the general formula (I) as component C, the use of such a compound in electrolyte solutions, the use of such an electrolyte solution in an electrochemical cell or for metal plating, and also electrochemical cells comprising a corresponding electrolyte solution.
Abstract:
Sulfur-based electrodes, and associated systems and methods for their fabrication, are generally described. Certain embodiments relate to sulfur-based electrodes with smooth external surfaces. According to some embodiments, relatively large forces can be applied to compositions from which the sulfur-based electrodes are made during the fabrication process. In some such embodiments, the compositions can maintain relatively high porosities, even after the relatively large forces have been applied to them. Methods in which liquids are employed during the electrode fabrication process are also described.
Abstract:
Electrode structures and methods for making the same are generally described. In certain embodiments, the electrode structures can include a plurality of particles, wherein the particles comprise indentations relative to their convex hulls. As the particles are moved proximate to or in contact with one another, the indentations of the particles can define pores between the particles. In addition, when particles comprising indentations relative to their convex hulls are moved relative to each other, the presence of the indentations can ensure that complete contact does not result between the particles (i.e., that there remains some space between the particles) and that void volume is maintained within the bulk of the assembly. Accordingly, electrodes comprising particles with indentations relative to their convex hulls can be configured to withstand the application of a force to the electrode while substantially maintaining electrode void volume (and, therefore, performance). Particles having indentations relative to their convex hulls also occupy a relatively small volume, compared to spheres or other particles including boundaries that fill substantially all of their convex hulls, allowing one to introduce a desired amount of void volume while reducing the percentage of volume within the electrode occupied by particulate material.
Abstract:
Composite structures including an ion-conducting material and a polymeric material (e.g., a separator) to protect electrodes are generally described. The ion-conducting material may be in the form of a layer that is bonded to a polymeric separator. The ion-conducting material may comprise a lithium oxysulfide having a lithium-ion conductivity of at least at least 10−6 S/cm.
Abstract translation:通常描述包括用于保护电极的离子传导材料和聚合材料(例如隔膜)的复合结构。 离子导电材料可以是与聚合物分离器结合的层的形式。 离子导电材料可以包含锂离子电导率至少为10 -6 S / cm 2的氧硫化硫。
Abstract:
The present invention relates to sulfur-carbon composite materials comprising(A) at least one carbon composite material comprising (a) a carbonization product of at least one carbonaceous starting material, incorporating (aa) particles of at least one electrically conductive additive, the particles having an aspect ratio of at least 10, and (B) elemental sulfur. In addition, the present invention also relates to a process for producing inventive sulfur-carbon composite materials, to cathode materials for electrochemical cells comprising inventive sulfur-carbon composite materials, to corresponding electrochemical cells and to the use of carbon composite materials for production of electrochemical cells.
Abstract:
Articles, compositions, and methods involving ionically conductive compounds are provided. In some embodiments, the ionically conductive compounds are useful for electrochemical cells. The disclosed ionically conductive compounds may be incorporated into an electrochemical cell (e.g., a lithium-sulfur electrochemical cell, a lithium-ion electrochemical cell, an intercalated-cathode based electrochemical cell) as, for example, a protective layer for an electrode, a solid electrolyte layer, and/or any other appropriate component within the electrochemical cell. In certain embodiments, electrode structures and/or methods for making electrode structures including a layer comprising an ionically conductive compound described herein are provided.
Abstract:
Electrode structures and methods for making the same are generally described. In certain embodiments, the electrode structures can include a plurality of particles, wherein the particles comprise indentations relative to their convex hulls. As the particles are moved proximate to or in contact with one another, the indentations of the particles can define pores between the particles. In addition, when particles comprising indentations relative to their convex hulls are moved relative to each other, the presence of the indentations can ensure that complete contact does not result between the particles (i.e., that there remains some space between the particles) and that void volume is maintained within the bulk of the assembly. Accordingly, electrodes comprising particles with indentations relative to their convex hulls can be configured to withstand the application of a force to the electrode while substantially maintaining electrode void volume (and, therefore, performance). Particles having indentations relative to their convex hulls also occupy a relatively small volume, compared to spheres or other particles including boundaries that fill substantially all of their convex hulls, allowing one to introduce a desired amount of void volume while reducing the percentage of volume within the electrode occupied by particulate material.
Abstract:
Articles and methods including layers for protection of electrodes in electrochemical cells are provided. As described herein, a layer, such as a protective layer for an electrode, may comprise a plurality of particles (e.g., crystalline inorganic particles, amorphous inorganic particles). In some embodiments, at least a portion of the plurality of particles (e.g., inorganic particles) are fused to one another. For instance, in some embodiments, the layer may be formed by aerosol deposition or another suitable process that involves subjecting the particles to a relatively high velocity such that fusion of particles occurs during deposition. In some embodiments, the layer (e.g., the layer comprising a plurality of particles) is an ion-conducting layer.