Abstract:
High energy density cathode materials, such as LiNixMnyCozO2 (NMC) cathode materials, with improved discharge capacity (hence energy density) and enhanced cycle life are described. A solid electrolyte, such as lithium phosphate infused inside of secondary particles of the cathode material demonstrates significantly enhanced structural integrity without significant or without any observable particle cracking occurring during charge/discharge processes, showing high capacity retention of more than 90% after 200 cycles at room temperature. In certain embodiments the disclosed cathode materials (and cathodes made therefrom) are formed using nickel-rich NMC and/or are used in a battery system with a non-aqueous dual-Li salt electrolytes.
Abstract:
Systems and methods for monitoring organisms within an aquatic environment are described. According to one aspect, an injectable acoustic transmission device includes a body configured to be injected inside of an organism, a transducer within the body and configured to convert a plurality of electrical signals into a plurality of data transmissions which are transmitted externally of the body and the organism, a plurality of circuit components within the body and configured to use electrical energy from a power source to generate the electrical signals which are provided to the transducer, and wherein the transducer defines an internal volume and at least one of the circuit components is provided within the internal volume of the transducer.
Abstract:
High energy density cathode materials, such as LiNiXMnYCoZO2 (NMC) cathode materials, with improved discharge capacity (hence energy density) and enhanced cycle life are described. A solid electrolyte, such as lithium phosphate infused inside of secondary particles of the cathode material demonstrates significantly enhanced structural integrity without significant or without any observable particle cracking occurring during charge/discharge processes, showing high capacity retention of more than 90% after 200 cycles at room temperature. In certain embodiments the disclosed cathode materials (and cathodes made therefrom) are formed using nickel-rich NMC and/or are used in a battery system with a non-aqueous dual-Li salt electrolytes.
Abstract:
Electrodes having nanostructure and/or utilizing nanoparticles of active materials and having high mass loadings of the active materials can be made to be physically robust and free of cracks and pinholes. The electrodes include nanoparticles having electroactive material, which nanoparticles are aggregated with carbon into larger secondary particles. The secondary particles can be bound with a binder to form the electrode.
Abstract:
Systems and methods for monitoring organisms within an aquatic environment are described. According to one aspect, an injectable acoustic transmission device includes a body configured to be injected inside of an organism, a transducer within the body and configured to convert a plurality of electrical signals into a plurality of data transmissions which are transmitted externally of the body and the organism, a plurality of circuit components within the body and configured to use electrical energy from a power source to generate the electrical signals which are provided to the transducer, and wherein the transducer defines an internal volume and at least one of the circuit components is provided within the internal volume of the transducer.
Abstract:
High energy density cathode materials, such as LiNixMnyCozO2 (NMC) cathode materials, with improved discharge capacity (hence energy density) and enhanced cycle life are described. A solid electrolyte, such as lithium phosphate infused inside of secondary particles of the cathode material demonstrates significantly enhanced structural integrity without significant or without any observable particle cracking occurring during charge/discharge processes, showing high capacity retention of more than 90% after 200 cycles at room temperature. In certain embodiments the disclosed cathode materials (and cathodes made therefrom) are formed using nickel-rich NMC and/or are used in a battery system with a non-aqueous dual-Li salt electrolytes.
Abstract:
Embodiments of an electrolyte for a hybrid magnesium-alkali metal ion battery are disclosed. The electrolyte includes a magnesium salt, a Lewis acid, and an alkali metal salt. Embodiments of battery systems including the electrolyte also are disclosed.
Abstract:
An energy storage device comprising: (A) an anode comprising graphite; and (B) an electrolyte composition comprising: (i) at least one carbonate solvent; (ii) an additive selected from CsPF6, RbPF6, Sr(PF6)2, Ba(PF6)2, or a mixture thereof; and (iii) a lithium salt.