Abstract:
A method of forming a fuel cell interconnect includes depositing a Cr alloy powder, sintering the Cr alloy powder, and repeating the depositing and the sintering to form the fuel cell interconnect. The Cr alloy powder may include a pre-alloyed powder containing from about 4 wt. % to about 6 wt. % Fe, and from about 94 wt. % to about 96 wt. % Cr.
Abstract:
Various embodiments include fuel cell interconnects having a fuel distribution portion having an inlet opening, a fuel collection portion having an outlet opening, and a primary fuel flow field containing channels, wherein the fuel distribution portion comprises at least one raised feature defining a fuel distribution flow path, and the fuel distribution flow path is not continuous with the channels in the primary fuel flow field. The at least one raised feature may include, for example, a network of ribs and/or dots. Further embodiments include interconnects having a fuel distribution portion with a variable surface depth to provide variable flow restriction and/or a plenum with variable surface depth and raised a raised relief feature on the cathode side, and/or varying flow channel depths and/or rib heights adjacent a fuel hole.
Abstract:
A cross-flow interconnect and a fuel cell stack including the same, the interconnect including fuel inlets and outlets that extend through the interconnect adjacent to opposing first and second peripheral edges of the interconnect; an air side; and an opposing fuel side. The air side includes an air flow field including air channels that extend in a first direction, from a third peripheral edge of the interconnect to an opposing fourth peripheral edge of the interconnect; and riser seal surfaces disposed on two opposing sides of the air flow field and in which the fuel inlets and outlets are formed. The fuel side includes a fuel flow field including fuel channels that extend in a second direction substantially perpendicular to the first direction, between the fuel inlets and outlets; and a perimeter seal surface surrounding the fuel flow field and the fuel inlets and outlets.
Abstract:
Methods and systems for measuring and/or estimating a coefficient of thermal expansion (CTE) of a component of a fuel cell system. A CTE measurement technique includes securing a measurement member over a surface of the component via a seal having a melting point, heating the seal above its melting point of the seal, cooling the component, measurement member and seal to a second temperature below the melting point of the seal, and determining the CTE of the component based on the change in the span of the measurement member after cooling. A fuel cell component characterization technique includes measuring an electrical resistivity (ER), conductivity (EC), resistance or conductance of the component, measuring at least one additional property of the component which, together with ER, EC, resistance or conductance, correlates to the CTE of the component, and sorting the component based on the measurements.
Abstract:
System and methods for refurbishing fuel cell stack components, the methods including singulating the stack using a splitting apparatus or a liquid nitrogen bath. Fuel cell debris may be removed from interconnects of the fuel cell stack using laser heating, flame heating, a die, sonication, a nubbed roller, grit blasting, and/or a high pressure fluid.
Abstract:
A method of making an interconnect for a solid oxide fuel cell stack includes providing a chromium alloy interconnect and providing a nickel mesh in contact with a fuel side of the interconnect. Formation of a chromium oxide layer is reduced or avoided in locations between the nickel mesh and the fuel side of the interconnect. A Cr—Ni alloy or a Cr—Fe—Ni alloy is located at least in the fuel side of the interconnect under the nickel mesh.