Abstract:
A renal nerve ablation device may include an elongate tubular member having a distal region. An expandable member may be coupled to the distal region. An electrode support may be coupled to the distal region of the elongate tubular member and extend over a body of the expandable member. The electrode support may be free of connection to the body of the expandable member. One or more electrodes may be coupled to the electrode support.
Abstract:
A cutting balloon catheter including a balloon mounted on a distal portion of a catheter shaft. An expandable frame may be disposed over the balloon. The expandable frame may include a plurality of struts extending from a proximal end region to a distal end region. One or more cutting members may be secured to the expandable frame.
Abstract:
An implant for occluding a left atrial appendage may include an expandable framework including a body portion and a disk portion, wherein the expandable framework is configured to shift between a collapsed configuration and an expanded configuration, and an occlusive disk element disposed within the disk portion. The disk portion may include a first disk portion integrally formed with the body portion, and a second disk portion movably attached to the first disk portion by at least one hinge member.
Abstract:
Medical devices for sympathetic nerve modulation are disclosed. An example medical device for sympathetic nerve modulation may include a catheter shaft having a distal region. An expandable member may be coupled to the distal region. A flexible circuit assembly may be attached to the expandable member. The flexible circuit assembly may include a first electrode strip, a second electrode strip, and a sensor strip disposed between the first electrode strip and the second electrode strip. The first electrode strip may include a first electrode. The second electrode strip may include a second electrode. The first electrode and the second electrode may define a pair of bipolar electrodes.
Abstract:
An implant for occluding a flow through a vessel may comprise a body member having a first end portion, a second end portion, and an intermediate rod portion extending between the first end portion and the second end portion and a mesh having base layer and a plurality of micro-pillars extending from a first surface of the base layer. The mesh may be disposed about at least a portion of the body such that the micro-pillars extending generally radially outward from the body member. The plurality of micro-pillars may be configured to extend into an adjacent tissue.
Abstract:
A method of making a spacer cage is disclosed. The method may include providing a tube having an outer diameter, a first second, a second section and a middle section having a first end connected to the first section and a second end connected to the second section, cutting the middle section to form strut elements of the spacer cage and cutting a plurality of longitudinal slits in the first and second sections to allow radial expansion of the first and second sections, expanding the tube using a mandrel, heat setting the tube while on the mandrel, and subsequent the heat setting, removing the first and second sections from the tube.