Abstract:
Medical devices and methods for making and using medical devices are disclosed. A method for removing an artifact of a biological reference signal present in a biological source signal may comprise sensing a biological reference signal with one or more electrodes and sensing a biological source signal, wherein the biological source signal comprises an artifact of the biological reference signal. The method may further comprise determining, based on the biological reference signal, the artifact of the biological reference signal and subtracting the artifact of the biological reference signal from the sensed biological source signal.
Abstract:
Medical devices and methods for making and using medical devices are disclosed. An example method may include a method of mapping the electrical activity of a heart. The method may include sensing a plurality of signals with a plurality of electrodes positioned within the heart, determining a dominant frequency of the plurality of signals and generating an alternate signal for each of the plurality of signals corresponding to the dominant frequency. The alternate signals may have a phase-shift corresponding to one of the plurality of signals. The method may also include displaying a characteristic of the alternate signal over time.
Abstract:
Medical devices and methods for using medical devices are disclosed. An example mapping medical device may include a catheter shaft with a plurality of electrodes. The catheter shaft may be coupled to a processor. The processor may be capable of collecting a first set of signals from a first location, collecting a second set of signals from a second location, characterizing the first set of signals over a first time period, characterizing the second set of signals over a second time period, comparing the first set of signals to the second set of signals and matching a first signal from the first set of signals with a second signal from the second set of signals.
Abstract:
A system and method for mapping an anatomical structure includes sensing activation signals of physiological activity with a plurality of mapping electrodes disposed in or near the anatomical structure. Patterns among the sensed activation signals are identified based on a similarity measure generated between each unique pair of identified patterns which are classified into groups based on a correlation between the corresponding pairs of similarity measures. A characteristic representation is determined for each group of similarity measures and displayed as a summary plot of the characteristic representations.
Abstract:
Electrical activity propagation along an electrode array within a cardiac chamber is reconstructed. Signals are sampled from the electrode array including signals from a channel of interest. An N-dimensional signal vector is then constructed using signals from N neighboring channels referenced to the channel of interest. A change in the N-dimensional signal vector over time is then determined and compared to a predetermined threshold to establish whether local activation has occurred on the channel of interest.
Abstract:
Electrical activity propagation along an electrode array within a cardiac chamber is reconstructed. Signals are sampled from the electrode array and the signals are plotted in multi-dimensional space with each axis corresponding to a channel in the electrode array. An excursion direction of global activation in the multi-dimensional space is estimated and a change in vectors of the sampled signals over time is determined. Signals with vectors that change over time in the excursion direction are suppressed.