Abstract:
Disclosed herein are apparatus, systems, and methods for ablating tissue in a patient by electroporation. Embodiments generally include an ablation catheter having a hand, a shaft, and an electroporation electrode arrangement. The shaft has a distal end and defines a longitudinal axis of the ablation catheter. The electroporation electrode arrangement is at the distal end of the shaft and is configured to generate a multidirectional electric field when at least one pulse sequence is delivered thereto. The multidirectional electric field includes at least two of the following directions relative to the longitudinal axis: generally axial, circumferential, and transverse. The electroporation electrode arrangement is configured to operatively couple to an electroporation generator that is configured to generate the at least one pulse sequence and is configured to receive the at least one pulse sequence from the electroporation generator.
Abstract:
An anatomical mapping system including a plurality of mapping electrodes disposed in or near an anatomical structure and configured to detect activation signals of physiological activity, each of the plurality of mapping electrodes having an electrode location, and a processing system associated with the plurality of mapping electrodes, and configured to record the detected activation signals and associate one of the plurality of mapping electrodes with each recorded activation signal. The processing system further configured to determine a dominant frequency at each electrode location, and determine a wavefront vector at each electrode location based on a difference between the dominant frequency at a first electrode location and the dominant frequency at neighboring electrode locations.
Abstract:
A method for mapping a cardiac chamber includes sensing activation signals of intrinsic physiological activity with a plurality of electrodes disposed in or near the cardiac chamber, the activation signals including a near-field activation signal component and a far-field activation signal component, isolating R-wave events in the activation signals, generating a far-field activation template representative of the far-field activation signal component based on the R-wave events, and filtering the far-field activation template from the activation signals to identify the near-field activation signal components in the activation signals.
Abstract:
Various techniques are described for replacement heart valve implantation. In one example, a system includes a specialized conduction system tissue activation potential sensing device, configured for delivery to an intracardiac region, a specialized conduction system tissue activation detector circuit, configured to detect, using the sensing device, a specialized conduction system tissue activation potential, and a processor circuit, configured to use information about the detected specialized conduction system tissue activation potential to generate a heart valve placement indication.
Abstract:
A catheter system includes a mapping catheter including a plurality of mapping electrodes, each mapping electrode configured to sense signals associated with an anatomical structure. The catheter system further includes a processor operatively coupled to the plurality of mapping electrodes and configured to receive the signals sensed by the plurality of mapping electrodes, characterize the signals sensed by the plurality of mapping electrodes based on amplitudes of the sensed signals, and generate an output of a quality of contact of the plurality of mapping electrodes with the anatomical structure based on the signal characterization.
Abstract:
A catheter system includes a mapping catheter having a plurality of splines, each of the plurality of splines including a plurality of mapping electrodes. The system further includes a processor operatively coupled to the plurality of mapping electrodes and configured to receive signals sensed by the plurality of mapping electrodes. The processor is further configured to estimate an interspline distance between adjacent splines in the plurality of splines based on the signals sensed by the mapping electrodes on the adjacent splines.
Abstract:
Electrical activity propagation along an electrode array within a cardiac chamber is reconstructed. Signals from the electrode array are sampled, and the signals are plotted in multi-dimensional space with each axis corresponding to a channel in the electrode array. A covariance matrix of the plotted signals is decomposed to characterize the spread of a data cloud of the signals in the multi-dimensional space. The data cloud is then decorrelated, such as through whitening, to suppress excursions along correlated directions (global activation) and enhance excursions along each axis (local activation).
Abstract:
Electrical activity propagation along an electrode array within a cardiac chamber is reconstructed. Signals are sampled from the electrode array and the signals are plotted in multi-dimensional space with each axis corresponding to a channel in the electrode array. An excursion direction of global activation in the multi-dimensional space is estimated and a change in vectors of the sampled signals over time is determined. Signals with vectors that change over time in the excursion direction are suppressed.
Abstract:
A medical system for removing far-field signals from a unipolar electrical signal is disclosed. In embodiments, the medical system comprises a catheter and a processing device communicatively coupled to the catheter. The catheter comprises a plurality of electrodes configured to sense a plurality of unipolar signals transmitted through tissue. The processing device is configured to: receive the sensed unipolar electrical signals, determine an electrode having a high level of contact with the tissue, and determine an electrode having a lower level of contact with the tissue than the electrode having the high level of contact with the tissue. Further, the processing device is configured to determine a sensed near-field electrical signal based on the unipolar electrical signal received from the electrode having the high level of contact and the unipolar electrical signal received from the electrode having the lower level of contact.
Abstract:
A medical system for removing far-field signals from a unipolar electrical signal is disclosed. In embodiments, the medical system comprises a catheter and a processing device communicatively coupled to the catheter. The catheter comprises a plurality of electrodes configured to sense a plurality of unipolar signals transmitted through tissue. The processing device is configured to: receive the sensed unipolar electrical signals, determine an electrode having a high level of contact with the tissue, and determine an electrode having a lower level of contact with the tissue than the electrode having the high level of contact with the tissue. Further, the processing device is configured to determine a sensed near-field electrical signal based on the unipolar electrical signal received from the electrode having the high level of contact and the unipolar electrical signal received from the electrode having the lower level of contact.