Abstract:
A transceiver of an apparatus supports communication with at least one additional apparatus. A processing module processes at least a portion of media access control (MAC) header content of a MAC frame within a signal received via the at least one transceiver or generated internally. In particular, the MAC header content, and optionally the MAC payload content, is processed based on a filter and classification agreement between the apparatus and the at least one additional apparatus to classify the MAC frame.
Abstract:
A relay receives a frame from a source, and based on state of a relayed frame bit within the frame, the relay selects an operational mode: implicit acknowledgement mode, first explicit acknowledgement mode, or second explicit acknowledgement mode. The relay sets the relayed frame bit in subsequent transmissions to indicate transmission opportunity (TXOP) control of the communication medium (e.g., whether under control of the relay or the source). The source may receive acknowledgement of the relay's successful receipt of the frame implicitly via the relay transmitting a relayed frame to the destination. Alternatively, the source may receive acknowledgement of the relay's successful receipt of the frame explicitly in a response frame from the relay. State of a more data bit in the frame receive from the source may indicate the source has one or more additional frames intended for the destination.
Abstract:
Communications are coordinated between different respective wireless communication device groups in a multiple delivery traffic indication map (DTIM) per device signaling scheme. Different respective wireless communication devices (e.g., wireless stations (STAs)) may communicate with a manager/coordinator wireless communication device (e.g., access point (AP)) at different times and for different reasons. The manager/coordinator wireless communication device generates and transmits beacons to the wireless communication devices specifying times during which communications may be supported with the manager/coordinator wireless communication device. A restricted access window (RAW) information element (IE) within a beacon includes at least one restricted access window (RAW) to specify a wireless communication device authorized to communicate with the manager/coordinator wireless communication device. Different wireless communication device groups may communicate with the manager/coordinator wireless communication device at different periodicities, and any one wireless communication device may be included in more than one wireless communication device group.
Abstract:
A device may use positioning information to increase the efficiency a wireless local area network (WLAN) scanning process. To determine the presence of WLANs within range, a device may determine its own location. For example, the device may determine its own location using a satellite-based navigation system. The device may then determine a wireless scanning strategy based on the determined location. The determination may be further based on connection parameters, such as, channel information, network capabilities, and/or other connection parameters.
Abstract:
A relay wireless communication device is implemented to perform buffer management and coordination with a source wireless communication device. A relay wireless communication device (generally, a relay) informs a source wireless communication device (source) of the status of memory therein to store messages intended for a destination wireless communication device (destination). For example, the source transmits information to the relay, which buffers information before forwarding it on to the destination. This buffering may be a function of the source having additional information intended for the relay and/or destination. The relay performs appropriate signaling, such as suspend transmission requests and resume transmission requests, to inform other devices in the system of its memory storage status (e.g., such as when having an actual or anticipated overflow). In one implementation, a suspend transmission request may be implemented by setting a particular bit within a communication from the relay to the source.
Abstract:
Distributed signal field for communications within multiple user, multiple access, and/or MIMO wireless communications. In accordance with wireless communications, a signal (SIG) field employed within such packets is distributed or partitioned into at least two separate signal fields (e.g., SIG A and SIG B) that are located in different portions of the packet. A first of the SIG fields includes information that may be processed and decoded by all wireless communication devices, and a second of the SIG fields includes information that is specific to one or more particular wireless communication devices (e.g., a specific wireless communication device or a specific subset of the wireless communication devices). The precise locations of the at least first and second SIG fields within a packet may be varied, including placing a second of the SIG fields (e.g., including user-specific information) adjacent to and preceding a data field in the packet.
Abstract:
A wireless communication device is configured to generate frames based on any of a number of different frame formats for transmission to one or more other recipient wireless communication devices. The frame may be implemented to include data intended for two or more recipient devices. The device encodes first data intended for a first recipient device using first one or more coding parameters and encodes second data intended for a second recipient device using second one or more coding parameters. The manner by which the first and second data have been encoded is indicated within one or more other fields within the frames based on the selected frame format. In one example, a single preamble specifies the first and second one or more coding parameters. In another example, an initial preamble and one or more respective sub-preambles specify the first and second one or more coding parameters.
Abstract:
Target wake time (TWT) within single user, multiple user, multiple access, and/or MIMO wireless communications. Within communication systems including different respective devices therein (e.g., wireless stations (STAs), smart meter stations (SMSTAs), etc.), coordination is made with respect to those devices awakening from less than full power state (e.g., from sleep, reduce functionality, power saving state, etc.). A TWT information element (IE) may be included within a frame or a signal corresponding to or based on that frame that is transmitted from one device to other device(s). One or more respective future targeted times (e.g., which may be based on a timing synchronization function (TSF) reference time) at which device(s) may awaken from less than full power state may be included within the TWT IE. Over time, different respective TWT IEs may be provided from various devices, such that respective targeted awake times may be modified dynamically for any given device.
Abstract:
Smart meter media access control (MAC) for single user, multiple user, multiple access, and/or MIMO wireless communications. Different types of wireless communication devices may be implemented within various wireless communication systems. Some of these devices may be implemented to communicate sensing and/or measurement to one or more other devices. For example, certain devices may be implemented to perform monitoring associated with any of a number of services provided by service providers (e.g., electricity, natural gas, water, Internet access, telephone service, and/or any other service). In accordance with such sensing and/or measurement related applications, a given device need not necessarily be awake or at a fully operative state at all times. Appropriate coordination, scheduling, communication medium access, etc. among potentially many implemented devices ensures effective communication and gathering of such sensing and/or measurement related data (e.g., using one or more service period (SP) announcements, various communication medium access options, etc.).
Abstract:
A wireless communication device is implemented to include a communication interface and a processor. The processor is configured to process communications associated with the other wireless communication devices within the wireless communication system to determine one or more traffic characteristics of those communications as well as one or more class characteristics of the other wireless communication devices. The processor is configured to classify the communications into one or more access categories based on the one or more traffic characteristics and is configured to classify the other devices into one or more device class categories based on the one or more class characteristics. The processor is then configured to generate one or more channel access control signals based on these classifications. The communication interface of the device is configured to transmit the one or more channel access control signals to one or more of the other devices.