Abstract:
Novel phosphorescent metal complexes containing 2-phenylisoquinoline ligands with at least two substituents on the isoquinoline ring are provided. The disclosed compounds have low sublimation temperatures that allow for ease of purification and fabrication into a variety of OLED devices.
Abstract:
Novel phosphorescent metal complexes containing 2-phenylquinoline ligands with at least two substituents on the quinoline ring are provided. The disclosed compounds have low sublimation temperatures that allow for ease of purification and fabrication into a variety of OLED devices.
Abstract:
Novel heteroleptic iridium carbene complexes are provided, which contain phenyl imidazole moieties. In particular, ligands containing 2,4,6-trisubstituted N-phenyl imidazole fragments have highly desirable properties that make them suitable materials for use in OLED devices.
Abstract:
Novel phosphorescent heteroleptic iridium complexes with substituted phenylquinoline ligands are provided. The alkyl substitution on the phenylquinoline ligands together with larger alkly substituents on the acetylacetone-derived ligands produces complexes with improved properties that are useful when incorporated into OLED devices.
Abstract:
Organometallic compounds comprising a phenylquinoline or phenylisoquinoline ligand having the quinoline or isoquinoline linked to the phenyl ring of the phenylquinoline or phenylisoquinoline, respectively, via two carbon atoms. These compounds also comprise a substituent other than hydrogen and deuterium on the quinoline, isoquinoline or linker. These compounds may be used as red emitters in phosphorescent OLEDs. In particular, these compounds may provide stable, narrow and efficient red emission.
Abstract:
Novel heteroleptic iridium carbene complexes are provided, which contain phenyl imidazole moieties. In particular, ligands containing 2,4,6-trisubstituted N-phenyl imidazole fragments have highly desirable properties that make them suitable materials for use in OLED devices.
Abstract:
Compounds are provided that comprise a ligand having a 5-substituted 2-phenylquinoline. In particular, the 2-phenylquinoline may be substituted with a bulky alkyl at the 5-position. These compounds may be used in organic light emitting devices, in particular as red emitters in the emissive layer of such devices, to provide devices having improved properties.
Abstract:
Novel heteroleptic iridium complexes are disclosed. The complexes contain a phenyl pyridine ligand and another ligand containing a dibenzofuran, dibenzothiophene, dibenzoselenophene, or carbazole linked to an imidazole or benzimidazole fragment. These complexes are useful materials when incorporated into OLED devices.
Abstract:
A new class of compounds containing aza-dibenzothiophene or aza-dibenzofuran are provided. The compounds may be used in organic light emitting devices giving improved stability, improved efficiency, long lifetime and low operational voltage. In particular, the compounds may be used as the host material of an emissive layer having a host and an emissive dopant, or as a material in an enhancement layer.
Abstract:
Compounds that have agonist activity at one or more of the S1P receptors are provided. The compounds are sphingosine analogs that, after phosphorylation, can behave as agonists at S1P receptors.