Abstract:
Laser light pulses are reflected off a scanning mirror. A time-of-flight distance measurement device receives reflected light pulses and determines distances. The light pulses have abrupt changes in amplitude. Reflected pulses are differentiated to reduce sensitivity to amplitude variations. Differentiated pulses may be compressed to keep the receiver from saturating. Distance measurements are combined with location information to produce a 3D image of a surface.
Abstract:
Laser light pulses are reflected off a scanning mirror. A time-of-flight distance measurement device receives reflected light pulses and determines distances. The light pulses have abrupt changes in amplitude. Reflected pulses are differentiated to reduce sensitivity to amplitude variations. Differentiated pulses may be compressed to keep the receiver from saturating. Distance measurements are combined with location information to produce a 3D image of a surface.
Abstract:
An integrated photonics module includes at least one light source and a MEMS scanner coupled to and held in alignment by an optical frame configured for mounting to a host system. According to some embodiments, the integrated photonics module may include a plurality of light sources and a beam combiner coupled to the optical frame. According to some embodiments, the integrated photonics module includes a selective fold mirror configured to direct at least a portion of emitted light toward the MEMS scanner in a normal direction and pass scanned light through to a field of view. The selective fold mirror may use beam polarization to select beam passing and reflection. The integrated photonics module may include a beam rotator such as a quarter-wave plate to convert the polarization of the emitted light to a different polarization adapted for passage through the fold mirror. The integrated photonics module may include one or more light detectors.
Abstract:
An optical deflector includes multiple voltage-dependent refractive boundaries. Light passes through the refractive boundaries and accumulates a deflection angle. An electrode placed to apply a voltage to the boundaries may be non-uniform to modulate a wavefront as it passes. A scanning laser projector includes the optical deflector to modulate laser light.
Abstract:
An integrated photonics module includes at least one light source and a MEMS scanner coupled to and held in alignment by an optical frame configured for mounting to a host system. According to some embodiments, the integrated photonics module may include a plurality of light sources and a beam combiner coupled to the optical frame. According to some embodiments, the integrated photonics module includes a selective fold mirror configured to direct at least a portion of emitted light toward the MEMS scanner in a normal direction and pass scanned light through to a field of view. The selective fold mirror may use beam polarization to select beam passing and reflection. The integrated photonics module may include a beam rotator such as a quarter-wave plate to convert the polarization of the emitted light to a different polarization adapted for passage through the fold mirror. The integrated photonics module may include one or more light detectors.
Abstract:
An integrated photonics module includes at least one light source and a MEMS scanner coupled to and held in alignment by an optical frame configured for mounting to a host system. According to some embodiments, the integrated photonics module may include a plurality of light sources and a beam combiner coupled to the optical frame. According to some embodiments, the integrated photonics module includes a selective fold mirror configured to direct at least a portion of emitted light toward the MEMS scanner in a normal direction and pass scanned light through to a field of view. The selective fold mirror may use beam polarization to select beam passing and reflection. The integrated photonics module may include a beam rotator such as a quarter-wave plate to convert the polarization of the emitted light to a different polarization adapted for passage through the fold mirror. The integrated photonics module may include one or more light detectors.
Abstract:
A method comprises applying a first delay to a first signal that is ahead of a second signal in a series of signals and determining a first number of delay units that provides the first delay to change an order between the delayed first signal and the second signal that has a phase difference with the first signal. The method further comprises determining a similar number for any other pair of signals in the series of signals that have the phase difference. The method further comprises determining a maximum and a minimum from the obtained numbers and determining linearity of the seriels of signals based on a difference between the maximum and the minimum.
Abstract:
A method for forming metal particles and fibers, including: mixing at least one of nanotubes and nanofibers with at least one metal salt to form a mixture, and decomposing and reducing the mixture. The method of syntheses metal nanoparticles and fibers, such as Cu, Pd, Pt, Ag and Au nanoparticles and Cu sub-micron fibers, by using carbon nanotubes or carbon nanofibers as templates.
Abstract:
An integrated photonics module may include a selective fold mirror configured to pass at least a portion of emitted light toward the MEMS scanner and reflect scanned light through to a field of view. The selective fold mirror may use beam polarization to select beam passing and reflection. The integrated photonics module may include a beam rotator such as a quarter-wave plate to convert the polarization of the emitted light to a different polarization adapted for passage through the fold mirror. The integrated photonics module may include one or more light detectors.
Abstract:
The present invention discloses a sampling component comprising a sampling body that can be electrically heated and the outer surface of which has a wiping sampling area; and an insulated handle that is connected with one longitudinal end of the sampling body. The sampling component according to the present invention contacts directly the contacts of an external power supply after being disposed in a analysis chamber, the power supply is turned on to heat the sampling body so as to realize sample pyrolysis, and the power is turned off immediately after the sampling component is taken away. Thus, the power supply of the sampler can work discontinuously so that the power consumption of the system is reduced, meanwhile, the system malfunction caused by a long-term work of the sampling device under a high temperature can be avoided. The present invention further discloses a sampling device having said sampling component and an ion mobility spectrometer having the sampling device.