Abstract:
Polypectomy devices and methods for making and using polypectomy devices are disclosed. An example polypectomy device may include an elongate sheath having a proximal end region and a distal end region. A shaft may be slidably disposed within the sheath. A handle may be coupled to the proximal end region of the sheath. The handle may be designed to axially shift the shaft relative to the sheath. A snare may be coupled to the shaft. The snare may include a first region, a traction region, and a distal tip region. The first region may have a non-circular cross-sectional shape. The traction region may include a plurality of traction members. At a position between two adjacent traction members the snare may have a reduced cross-sectional area relative to the first region. The distal tip region may have a circular cross-sectional shape.
Abstract:
An open-irrigated ablation catheter system includes a catheter body, and an electrode tip body mounted on a distal portion of the catheter body. The electrode tip body includes a proximal end configured for connection to the catheter body and a wall defining an open interior region and including one or more irrigation ports. The wall is conductive for delivering radio frequency (RF) energy. The catheter system further includes a proximal insert positioned partially within the catheter body and at least partially within the proximal end of the electrode tip body. The proximal insert includes a fluid inlet for receiving a cooling fluid delivered via the catheter body. The proximal insert forms a flow path configured to direct the cooling fluid from the fluid inlet to cool the distal portion of the catheter body and to cool a junction of the catheter body and the electrode tip body.
Abstract:
Various techniques are described for replacement heart valve implantation. In one example, a system includes a specialized conduction system tissue activation potential sensing device, configured for delivery to an intracardiac region, a specialized conduction system tissue activation detector circuit, configured to detect, using the sensing device, a specialized conduction system tissue activation potential, and a processor circuit, configured to use information about the detected specialized conduction system tissue activation potential to generate a heart valve placement indication.