Abstract:
The present invention provides a liquid ejecting module capable of performing stable ejection operation while circulating and supplying fresh ink to the vicinity of ejection ports arranged in high density. To achieve this, a liquid ejecting module includes an element arranged face in which a plurality of ejecting elements are arranged, a circulation flow path including a supply flow path which supplies liquid to a pressure chamber and a collection flow path which collects liquid from the pressure chamber, and a liquid delivery mechanism provided in the circulation flow path for circulating liquid in the pressure chamber. The liquid delivery mechanism is located lower than the element arranged face.
Abstract:
Provided is a liquid ejection head including: a substrate; an energy-generating element, which is arranged on the substrate, and is used for ejecting a liquid; a flow path forming member, which has an ejection orifice for ejecting the liquid, and is configured to form a flow path of the liquid between the flow path forming member and the substrate; an electrode configured to generate a flow of the liquid; and a wiring, which is arranged so as to be brought into contact with the flow path forming member, and is configured to supply electric power to the electrode, in which the flow path forming member contains an organic material, and in which the electrode and the wiring are each formed of a conductive adhesive layer containing at least one of conductive diamond-like carbon or tin-doped indium oxide.
Abstract:
A liquid ejecting apparatus has a liquid ejecting unit and a negative pressure regulating unit provided between passages connecting the tank to the liquid ejecting unit, regulates fluid pressure of liquid flowing into the liquid ejecting unit. The negative pressure regulating unit includes a negative pressure chamber whose internal pressure is regulated within a predetermined range, and a discharging passage for discharging liquid stored in the negative pressure chamber from the negative pressure regulating unit. The discharging passage has an outlet disposed in an upper portion of the negative pressure chamber in a direction of gravity, a bubble accumulation portion connected to the outlet and having a space above the outlet in the direction of gravity, and a passage guiding liquid flowing from the outlet to a discharging port opened in a bottom of the negative pressure regulating unit.
Abstract:
In a configuration having a circulation flow path in association with an ejection element, there is provided a liquid ejecting apparatus capable of circulating liquid suitably and maintaining stable ejection operation while reducing liquid vaporization, a power supply capacity, and the effect of noise. For this purpose, in a configuration in which liquid delivery mechanisms that facilitate a flow in a flow path are prepared in association with pressure chambers, the liquid delivery mechanisms are divided into a plurality of blocks and the liquid delivery mechanisms included in each of the blocks are driven at different timings.
Abstract:
In a printing apparatus including a circulation system circulating a liquid, a volatile component included in the liquid evaporates from an ejection opening and thus characteristics of the liquid involving with concentration, viscosity and the like change. The invention provides a printing apparatus including: a page wide type liquid ejection head that includes an ejection opening ejecting a liquid, a print element generating energy for ejecting a liquid, and a pressure chamber having the print element provided therein; a cap that covers the ejection opening; and a circulator configured to circulate the liquid so that the liquid passes through the pressure chamber, wherein a circulation of the liquid is started after the cap is opened and the circulation of the liquid is stopped in a case where an image forming operation of ejecting the liquid from the ejection opening on the basis of a job is ended.
Abstract:
A liquid discharge device to perform recording by use of a liquid discharge head including discharge ports to discharge a liquid, pressure generation elements to generate energy to be used to discharge the liquid, and pressure chambers communicating with the discharge ports. The liquid discharge device includes: a control unit to control a temperature of the liquid discharge head by applying heat with heating elements arranged in divided areas of a region of the liquid discharge head where the discharge ports are arranged. When there is recording data for the discharge port in a certain one of the divided areas, the control unit causes the heating element in the divided area to generate heat, and when there is no recording data for the discharge port in the certain divided area, the control unit keeps the heating element in the certain divided area from generating heat.
Abstract:
A liquid ejection head includes a plurality of recording element substrates that each include an energy generating element generating energy utilized for ejecting a liquid and that each have a supply port through which the liquid is supplied to the energy generating element, a plurality of support members that each have a flow passage communicating with a corresponding one of the supply ports and that each support a corresponding one of the plurality of recording element substrates, a base substrate that supports the plurality of support members, and a heat insulating member disposed between the flow passages and the base substrate. In the liquid ejection head, a thermal conductivity of the support members is equal to or greater than a thermal conductivity of the recording element substrates, and a thermal conductivity of the heat insulating member is less than a thermal conductivity of the base substrate.
Abstract:
A liquid ejection head includes a plurality of ejection members, each having an ejection port for ejecting liquid, an element for ejecting a liquid from the ejection port, a liquid chamber for storing liquid to be supplied to the ejection port and a heater for heating liquid, and a base substrate bearing the plurality of ejection members arranged thereon and having a common flow channel for supplying liquid to the plurality of liquid chambers. The common flow channel communicates with the liquid chambers by way of respective branch ports and each of the branch ports is provided with a notch portion at the upstream side thereof as viewed in the flow direction of liquid flowing through the common flow channel and the upstream side of each of the branch ports has a profile asymmetric with regard to a straight line passing through the center of gravity of the branch port and extending in the flow direction.
Abstract:
A liquid ejection head including: a support member, a plurality of printing element boards arranged linearly on the support member, an electric wiring member fixed to the support member, and configured to transmit an electrical signal necessary to eject a liquid to the plurality of printing element boards, a plurality of conductive members arranged in an arranging direction of the plurality of printing element boards, and configured to electrically connect the plurality of printing element boards to the electric wiring member, and a thermosetting sealing member extending in the arranging direction and covering the conductive members, connecting points of the printing element boards with the conductive members, and connecting points of the electric wiring member with the conductive members, wherein the sealing member is divided at, at least one place in the arranging direction.
Abstract:
A liquid ejection head includes a recording element substrate including an electrode at a first side portion; an electrical wiring substrate having a wire line; a connecting portion connecting the electrode and the wire line; and a sealing material provided between the first side portion of the recording element substrate and the electrical wiring substrate. A first line and a second line are out of alignment in a direction along a side of the recording element substrate. The first line orthogonal to the side passes through a center of gravity of the recording element substrate. A second line passes through a center of a part covered with the sealing material and extends parallel to the first line. Of a part of the sealing material, a first area on the first line side has a larger volume than that of a second area opposite to the first line side.