Abstract:
A method for managing a wireless system area, a terminal and a base station are provided. A new location management area for the terminal in an inactive connection state/RRC idle state is defined. The process of moving among different nodes in the area is simplified.
Abstract:
Disclosed are a data transmission method and apparatus. In embodiments of this application, a virtual cell comprising multiple cells can be configured, and data transmission can be implemented by time-division multiplexing among the cells, so that transmission carriers for a terminal service can be flexibly adjusted. Particularly, under the condition that transmission is deployed on an unlicensed spectrum resource, multiple cells operating on an unlicensed frequency band are aggregated into one virtual cell, and data transmission is implemented by time-division multiplexing among the cells; therefore, the interference in different frequency domains can be reduced and the system transmission efficiency can be improved.
Abstract:
Disclosed in the present application are a method and a device for intra-cell handover, and a method and a device for path switching, used for avoiding network side and user equipment (UE) side next hop chaining counter (NCC) desychronization when a UE switches out of a relay node (RN), so as to avoid communication failure. The method for intra-cell handover provided in the present application comprises: an RN determining whether the value of the difference between the UE side NCC and the NCC most recently received by the RN and allocated for the UE by a mobility management entity (MME) serving the UE meets the preset triggering requirement for intra-cell handover; if the value of the difference meets the triggering requirement, then the RN initiates intra-cell handover.
Abstract:
Embodiments of the present invention relate to the technical field of wireless communications, and specifically relate to a method, system and device for switching, for use in solving the problem in the prior art of the risk of communication interruption when a user equipment (UE) is switching due to greatly increased frequency and number of times of switching by the UE in an E-UTRAN network architecture. The method of the embodiments of the present invention comprises: a UE receives a DRB reconfiguration message from a macro base station; and the UE keeps a PDCP layer corresponding to all of the DRBs of a control side and of a user side at the macro base station, and switches other layers corresponding to some or all of the DRBs of the user side except the PDCP layer onto at least one base station. Because the embodiments of the present invention reduce the number of times of control side switching by the UE, in the case of increased frequency and number of times of switching by the UE in the E-UTRAN network architecture, the risk of communication interruption is reduced when the UE is switching.
Abstract:
Disclosed are a method and apparatus for sending information and channel monitoring processing. The method comprises: when a terminal receives a wake-up signal and is woken up, monitoring, within a time window, a paging channel and/or a control channel in a discontinuous reception or an extended discontinuous reception manner; if the terminal receives a paging message and/or control channel scheduling information within the time window, then processing the paging message and/or processing the control channel scheduling information; and if the terminal does not receive a paging message and/or control channel scheduling information within the time window, then not monitoring the paging channel and/or control channel any more, and continuing to receive a wake-up signal. A base station sends the wake-up signal to the terminal, and sends, within a time window, information over a paging channel and/or a control channel in a discontinuous reception or an extended discontinuous reception manner. By means of the present application, it can be ensured that a terminal saves electricity, and that a service of the terminal can be reached.
Abstract:
Disclosed are a method, a device, and a system for the acquisition of control node information. In embodiments of the present invention, on the basis of information transmitted by a base station, a relay node acquires control node information on user terminal access attached in the information acquired, thereby allowing a relay node in a system placed after the introducing relay node to be informed of the control node information on user terminal access.
Abstract:
A method, device, base station and UE for uplink transmission main carrier switch and control enable the uplink transmission main carrier of the UE to switch among multiple different cells providing service for the UE, enhance the transmission flexibility of the uplink transmission main carrier of the UE, and at the same time take account of the transmission requirements of transmission power and UE services. The method for uplink transmission main carrier switch and control includes: determining the transmission resources of the cell set used for providing service for the UE, the transmission resources being configured for the user equipment (UE), wherein the transmission resources includes the configured resources of uplink transmission carrier of multiple cells, the transmission resources being used for enabling the uplink transmission main carrier of UE to switch among the uplink transmission carriers corresponding to different cells; informing the UE of the transmission resource of the cell set.
Abstract:
The embodiments of the present invention relate to the technical field of wireless communications, and in particular, to a method, system and device for performing uplink transmission, which are used for solving the problems existing in the prior art that the spectrum efficiency and transmission efficiency are relatively low when the uplink transmission is performed in the case that the uplink transmission power is limited. The method of the embodiments of the present invention comprises: user equipment mapping complex symbol data obtained by modulation mapping to Q sub-frames, where Q is a positive integer; the user equipment modulating the complex symbol data mapped to each sub-frame, respectively, so as to generate sending signals corresponding to each sub-frame; and the user equipment sending the sending signals over the corresponding sub-frames. Since the embodiments of the present invention map the data in a data packet into a plurality of sub-frames for transmission, the total transmission power of the user equipment can be correctly received, thereby improving the spectrum efficiency and transmission efficiency when the uplink transmission is performed in the case that the uplink transmission power is limited.
Abstract:
Disclosed in the present application are a method and a device for intra-cell handover, and a method and a device for path switching, used for avoiding network side and user equipment (UE) side next hop chaining counter (NCC) desychronization when a UE switches out of a relay node (RN), so as to avoid communication failure. The method for intra-cell handover provided in the present application comprises: an RN determining whether the value of the difference between the UE side NCC and the NCC most recently received by the RN and allocated for the UE by a mobility management entity (MME) serving the UE meets the preset triggering requirement for intra-cell handover; if the value of the difference meets the triggering requirement, then the RN initiates intra-cell handover.
Abstract:
The embodiments of the present invention relate to the technical field of wireless communications, and in particular, to a method, system and device for performing uplink transmission, which are used for solving the problems existing in the prior art that the spectrum efficiency and transmission efficiency are relatively low when the uplink transmission is performed in the case that the uplink transmission power is limited. The method of the embodiments of the present invention comprises: user equipment mapping complex symbol data obtained by modulation mapping to Q sub-frames, where Q is a positive integer; the user equipment modulating the complex symbol data mapped to each sub-frame, respectively, so as to generate sending signals corresponding to each sub-frame; and the user equipment sending the sending signals over the corresponding sub-frames. Since the embodiments of the present invention map the data in a data packet into a plurality of sub-frames for transmission, the total transmission power of the user equipment can be correctly received, thereby improving the spectrum efficiency and transmission efficiency when the uplink transmission is performed in the case that the uplink transmission power is limited.