Abstract:
The present invention provides a technique that uses discrete wavelengths of illumination of an ore sample, and through the use of optical filters and laser illumination the signal-to-noise ratio of the measurement can be greatly improved, and may take the form of apparatus featuring a signal processor configured to: receive signaling containing information about a spectral reflectance caused by discrete wavelengths illuminating an ore sample; and determine information about a bitumen content of the ore sample based at least partly on the signaling. The signal processor may provide corresponding signaling containing information about the bitumen content of the ore sample, including for further processing, printing or displaying.
Abstract:
Apparatus for determining a thickness of a wall of a pipe, featuring a signal processing module configured to respond to signaling containing information about traveling stress waves transmitted to and reflected back from a wall of a pipe by a sensor band that includes a series, ring or array having multiple transducers circumferentially arranged and mounted around, and attached to or clamped onto, an outside wall of the pipe; determine a profile of a thickness of the wall of the pipe corresponding to circumferential locations of the multiple transducers based on the signaling received from the sensor band, and the provides corresponding signaling containing information about the profile of the thickness of the wall of the pipe; and another module configured to receive the corresponding signaling and provide a visual indication of either data or a graph of the thickness of the wall of the pipe.
Abstract:
Apparatus is provided featuring a first and second cells. The first cell receives an ore slurry having mineral particles of interest, receives unexpanded polymer microspheres comprising a surface having mineral collector chemistry attached thereto with molecules for attaching the mineral particles of interest, causes the unexpanded polymer microspheres to expand substantially in volume into expanded polymer microspheres having a substantially increased sphere surface area, and provides an expanded polymer microsphere foam layer comprising the expanded polymer microspheres with attached mineral particles of interest. The second cell receives the expanded polymer microsphere foam layer, and causes the expanded polymer microspheres to collapse substantially in volume into collapsed polymer microspheres having a substantially reduced sphere surface area that results in a mechanical shearing off of the attached mineral particles of interest. The second cell may also provide a mineral concentrate output having the mineral particles of interest.
Abstract:
Apparatus is provided having an acoustic-based air probe with an acoustic source configured to provide an acoustic signal into a mixture of concrete; and an acoustic receiver configured to be substantially co-planar with the acoustic source, to respond to the acoustic signal, and to provide signaling containing information about the acoustic signal injected into the mixture of concrete.
Abstract:
The invention provides a signal processor that receives a signal containing information about an acoustic signal that is generated by at least one acoustic transmitter, that travels through an aerated fluid in a container, and that is received by at least one acoustic receiver arranged in relation to the container, including inside the container; and determines the gas volume fraction of the aerated fluid based at least partly on the speed of sound measurement of the acoustic signal that travels through the aerated fluid in the container. The signal processor also sends an output signal containing information about the gas volume fraction of the aerated fluid. The signal processor may be configured together with at least one acoustic transmitter, the at least one acoustic receiver, or both.
Abstract:
Apparatus for determining a thickness of a wall of a pipe, featuring a signal processing module configured to respond to signaling containing information about traveling stress waves transmitted to and reflected back from a wall of a pipe by a sensor band that includes a series, ring or array having multiple transducers circumferentially arranged and mounted around, and attached to or clamped onto, an outside wall of the pipe; and determine a profile of a thickness of the wall of the pipe corresponding to circumferential locations of the multiple transducers based on the signaling received from the sensor band; and one or more orientation or rotation sensors, each responding to its orientation in relation to its displacement on the pipe and to provide an orientation signal containing information about the same.
Abstract:
Apparatus is provided comprising a signal processor that receives signaling containing information about an acoustic signal swept and sensed over a frequency range in relation to a pipe; and determines information about the structure of the pipe based at least partly on two or more sub-frequency ranges that form part of the frequency range in the signaling received. The signal processor also receives the acoustic signal being transmitted to the pipe and corresponding signaling in the two or more sub-frequency ranges containing information about reflections of the acoustic signal back from the pipe; and determines information about the structure of the pipe based at least partly on a coherent mixing of the acoustic signal and the corresponding signaling in the two or more sub-frequency ranges using a coherent acoustic tomography technique. Alternatively, the signal processor also receives associated signaling in the two or more sub-frequency ranges containing information about associated resonance in a liner of a wall of the pipe and determines information about the liner of the wall of the pipe, based at least partly on the two or more sub-frequency ranges.