Abstract:
The proposed methodology enables finding the most efficient roots in the network to carry multicast traffic, while further providing a theoretical basis for such selection. It guarantees the minimum expected delivery cost for multicast frames in the absence of any knowledge about the source and receivers.
Abstract:
Disclosed are systems, methods, and computer-readable storage media for synchronizing the secondary vPC node to the primary vPC node in a BFD protocol over a VxLAN channel with a remote node. In some embodiments of the present technology a primary vPC node can receive a packet from the remote node. The primary vPC node can then determine the packet includes either a MAC address corresponding to the primary vPC node or a secondary vPC node, and at least one inner packet identifier. Additionally, the primary networking switch can identify an access control list (ACL) entry from a set of ACL entries based on the at least one inner packet identifier. Subsequently, based on the ACL entry, the primary vPC node can generate a copy of the packet. After which, the primary vPC node can transmit the packet to the secondary vPC node.
Abstract:
Embodiments provide a method, network device, and computer program product for optimizing traffic in a link-state network distributed across a plurality of sites. The method, network device, and computer program product include receiving a multi-destination message at a first node within the link-state network. Additionally, the method, network device, and computer program product include identifying a plurality of multi-destination trees within the network, each tree having a respective root node. The method, network device, and computer program product determine a plurality of cost values corresponding to each of the plurality of multi-destination trees, based on one or more links along a shortest path from the first node to the respective root node of each tree. Based on the determined cost values, the method, network device, and computer program product select one or more of the multi-destination trees and transmit the multi-destination message using the selected tree.
Abstract:
A method is provided in one example and includes broadcasting a switching node identifier associated with a first link-state protocol enabled switching node to a plurality of link-state protocol enabled switching nodes. The plurality of link-state protocol enabled switching nodes are in communication with one another by a link-state protocol cloud. The method further includes broadcasting a priority associated with the first link-state protocol enabled switching node to the plurality of link-state protocol enabled switching nodes. The method further includes broadcasting connectivity information of the first link-state protocol enabled switching node to the plurality of link-state protocol enabled switching nodes using the link-state protocol cloud. The connectivity information includes connectivity of the first link-state protocol enabled switching node with at least one spanning tree protocol enabled switching node.
Abstract:
Devices, systems, methods, and processes for sustainably operating a plurality of network planes via de-energization and re-energization is described herein. In many network configurations, a plurality of planes exist that allow for more modular connections in a network fabric. Often, these planes are configured such that each plane is not directly connected to another plane. Because of this, various embodiments described herein can evaluate network conditions and determine if there are conditions suitable to de-energize a plane by either directing the plane to enter a lower-power mode, by shutting off the plane, or disconnecting the available power. This de-energization period can be for a period of time or can occur until a triggering event is detected that indicates that the plane should be re-energized. These determinations can be done based on current traffic trends or historical conditions. They may also be heuristic-based or generated via one or more machine-learning processes.
Abstract:
Techniques for sending Compute Express Link (CXL) packets over Ethernet (CXL-E) in a composable data center that may include disaggregated, composable servers. The techniques may include receiving, from a first server device, a request to bind the first server device with a multiple logical device (MLD) appliance. Based at least in part on the request, a first CXL-E connection may be established for the first server device to export a computing resource to the MLD appliance. The techniques may also include receiving, from the MLD appliance, an indication that the computing resource is available, and receiving, from a second server device, a second request for the computing resource. Based at least in part on the second request, a second CXL-E connection may be established for the second server device to consume or otherwise utilize the computing resource of the first server device via the MLD appliance.
Abstract:
A method of creating a root-of-trust (RoT) within a network fabric may include powering on a network interface card (NIC) baseboard management controller (BMC) (NIC BMC), booting up a NIC via the NIC BMC, obtaining an address for the NIC, verifying an identity of the NIC at a fabric trust identity server using a key obtained from a secure vault communicatively coupled to the NIC BMC, verifying with the fabric trust identity server a number of images of a host device residing in the NIC based at least in part on the identity of the NIC being verified, and instructing a platform BMC to boot up the host device based at least in part on the number of images of the host device being verified.
Abstract:
Aspects of the disclosed technology address limitations relating to packet replication for multi-destination traffic, by providing methods for performing hardware-based replication in network infrastructure devices, such as switches. In some aspects, application specific integrated circuits (ASICs) resident in physical devices can be used to perform packet replication. Depending on implementation, a hardware-based replication process can include steps for receiving a first packet that includes a first outer header containing first address information, receiving a second packet including a second outer header containing a hardware replication flag, forwarding the first packet to all virtual tunnel endpoints (VTEPs) connected with the TOR switch, and performing hardware replication for the second packet based on the hardware replication flag to generate one or more unicast packets. Systems and machine readable media are also provided.
Abstract:
The proposed methodology enables finding the most efficient roots in the network to carry multicast traffic, while further providing a theoretical basis for such selection. It guarantees the minimum expected delivery cost for multicast frames in the absence of any knowledge about the source and receivers.
Abstract:
The proposed methodology enables finding the most efficient roots in the network to carry multicast traffic, while further providing a theoretical basis for such selection. It guarantees the minimum expected delivery cost for multicast frames in the absence of any knowledge about the source and receivers.