Abstract:
Disclosed herein are OLED devices comprising waveguides including at least one waveguide layer comprising at least one inorganic nanoparticle and at least one binder and having an RMS surface roughness of less than about 20 nm. Lighting and display devices comprising such OLED devices are further disclosed herein as well as methods for making the waveguides.
Abstract:
Disclosed herein are waveguides comprising at least one scattering surface, a periodicity ranging from about 0.5 μm to about 2 μm, and an RMS roughness ranging from about 20 nm to about 60 nm. Single-layer waveguides having a thickness ranging from about 1 μm to about 100 μm are disclosed herein as well as multi-layer waveguides comprising at least one high index layer and optionally at least one low index layer. Lighting and display devices and OLEDs comprising such waveguides are further disclosed herein as well as methods for making the waveguides.
Abstract:
A backlight includes a substrate, a plurality of light sources, a reflective layer, a first diffuser plate, a second diffuser plate, and a color conversion layer. The plurality of light sources are proximate the substrate. The reflective layer is proximate the substrate. The first diffuser plate is over the plurality of light sources. The color conversion layer is between the first diffuser plate and the second diffuser plate.
Abstract:
A backlight includes a substrate, a plurality of light sources, a reflective layer, a first diffuser plate, a second diffuser plate, and a color conversion layer. The plurality of light sources are proximate the substrate. The reflective layer is proximate the substrate. The first diffuser plate is over the plurality of light sources. The color conversion layer is between the first diffuser plate and the second diffuser plate.
Abstract:
A backlight includes a substrate, a plurality of light sources proximate the substrate, a first reflective layer on the substrate, and a plurality of patterned reflectors over the plurality of light sources. Each light source includes a size measured in a plane parallel to the substrate. Each patterned reflector is aligned with a corresponding light source and includes a thickness profile. The thickness profile includes a substantially flat section and a curved section extending from and surrounding the substantially flat section. The substantially flat section varies in thickness by no more than plus or minus 20 percent of an average thickness of the substantially flat section. The substantially flat section includes a size in a plane parallel to the substrate equal to or greater than the size of each light source.
Abstract:
Disclosed herein are OLED devices comprising waveguides including at least one waveguide layer comprising at least one inorganic nanoparticle and at least one binder and having an RMS surface roughness of less than about 20 nm. Lighting and display devices comprising such OLED devices are further disclosed herein as well as methods for making the waveguides.
Abstract:
A composite coating having a high refractive index, high Abbe number, low haze and high transmittance, suitable for fabricating nanoscale optical surface features includes a resin with a crosslinked polymer matrix having polymers with repeat units derived from acrylic or methacrylic monomers or oligomers and inorganic nanoparticles disposed within the resin, wherein the composite coating has a refractive index equal to or greater than 1.7 and a glass transition temperature equal to or greater than 60° C.
Abstract:
An apparatus for light diffraction and an organic light emitting diode (OLED) incorporating the light diffraction apparatus is disclosed. An apparatus for light diffraction may comprise an optional planarization layer, a transparent substrate, a waveguide layer. The planarization layer may have a refractive index of ns. The transparent substrate may have a refractive index of ng. The waveguide layer may have a refractive index nw distributed over of the transparent substrate. The waveguide layer may comprise a binding matrix, at least one nanoparticle. The waveguide layer may be interposed between the transparent substrate and the optional planarization layer.
Abstract:
Disclosed herein are OLED devices comprising waveguides including at least one waveguide layer comprising at least one inorganic nanoparticle and at least one binder and having an RMS surface roughness of less than about 20 nm. Lighting and display devices comprising such OLED devices are further disclosed herein as well as methods for making the waveguides.
Abstract:
Disclosed herein are light filters comprising a glass substrate having a surface patterned with a plurality of spaced apart rings, wherein each ring has an outer diameter independently ranging from about 10 microns to about 100 microns, and wherein the light filter has a haze of less than about 20%. Display devices comprises such light filters are also disclosed herein. Methods for making such light filters and methods for filtering light using such light filters are further disclosed herein.