Abstract:
A method for extracting lithium metal ions from glass includes contacting the glass with a molten salt bath for a duration of time, wherein the glass includes lithium and the contacting the glass with the molten salt bath for the duration of time extracts at least 40% of the lithium metal ions from the glass. The method further includes removing residual solids from the molten salt bath, wherein the residual solids include residual glass having a reduced concentration of lithium. The method further includes precipitating lithium metal ions from the molten salt bath to produce a solid precipitated lithium salt and separating the precipitated lithium salt from the molten salt bath.
Abstract:
An apparatus for light diffraction and an organic light emitting diode (OLED) incorporating the light diffraction apparatus is disclosed. An apparatus for light diffraction may comprise an optional planarization layer, a transparent substrate, a waveguide layer. The planarization layer may have a refractive index of ns. The transparent substrate may have a refractive index of ng. The waveguide layer may have a refractive index nw distributed over of the transparent substrate. The waveguide layer may comprise a binding matrix, at least one nanoparticle. The waveguide layer may be interposed between the transparent substrate and the optional planarization layer.
Abstract:
Methods for regenerating a salt bath composition include heating the salt bath composition to an ion exchange temperature to form a molten salt bath. The methods may further include contacting at least a portion of an ion-exchangeable article that includes lithium oxide (Li2O) with the molten salt bath. Lithium cations may diffuse from the ion-exchangeable article and into the molten salt bath. Additionally, the methods may include adding a first phosphate salt to the molten salt bath. A lithium phosphate salt that includes at least a portion of the lithium cations may be formed and precipitate from the molten salt bath. Furthermore, the methods may include adding a multivalent salt that includes a multivalent metal cation to the molten salt bath. A second phosphate salt that includes the multivalent metal cation may be formed and precipitate from the molten salt bath.
Abstract:
Disclosed herein are waveguides comprising at least one scattering surface, a periodicity ranging from about 0.5 μm to about 2 μm, and an RMS roughness ranging from about 20 nm to about 60 nm. Single-layer waveguides having a thickness ranging from about 1 μm to about 100 μm are disclosed herein as well as multi-layer waveguides comprising at least one high index layer and optionally at least one low index layer. Lighting and display devices and OLEDs comprising such waveguides are further disclosed herein as well as methods for making the waveguides.
Abstract:
An organic light emitting diode comprising a light extraction substructure and a diode superstructure is provided. The light extraction substructure comprises a light expulsion matrix distributed over discrete light extraction waveguide elements and a waveguide surface of the glass substrate. The light expulsion matrix is distributed at varying thicknesses to enhance the planarity of a diode superstructure-engaging side of the light extraction substructure and to provide light expulsion sites at the waveguide element termination points of the discrete light extraction waveguide elements. In operation, light originating in the organic light emitting semiconductor material of the diode superstructure is coupled to the discrete waveguide elements of the light extraction substructure as respective coupled modes characterized by an approximate coupling length defined as the propagation distance required for an optical mode to be coupled from the superstructure waveguide to one of the discrete waveguide elements of the light extraction substructure.
Abstract:
A glass-ceramic substrate includes a continuous glass phase; a magnetizable component; and an antimicrobial component. The substrate can further include a discontinuous glass phase disposed in the continuous glass phase. The magnetizable component and the antimicrobial component can be disposed in the discontinuous glass phase. The substrate can include 45 percent to 60 percent SiO2; 3 percent to 6 percent P2O5; 3 percent to 10 percent B2O3; 4 percent to 8 percent K2O; 7 percent to 15 percent Fe2O3; and 15 percent to 25 percent CuO. A ratio of the mole percentage of CuO to Fe2O3 in the substrate can be 1.3 to 3.0. The magnetizable component can include one or more of delafossite and magnetite. The antimicrobial component can include one or more of cuprite and metallic copper. The substrate can exhibit a magnetic permeability of greater than or equal to 1.02μR at a frequency of 10,000,000 Hz.
Abstract:
An apparatus for light diffraction and an organic light emitting diode (OLED) incorporating the light diffraction apparatus is disclosed. An apparatus for light diffraction may comprise an optional planarization layer, a transparent substrate, a waveguide layer. The planarization layer may have a refractive index of ns. The transparent substrate may have a refractive index of ng. The waveguide layer may have a refractive index nw distributed over of the transparent substrate. The waveguide layer may comprise a binding matrix, at least one nanoparticle. The waveguide layer may be interposed between the transparent substrate and the optional planarization layer.
Abstract:
Embodiments of the present disclosure pertain to crystallizable glasses and glass-ceramics that exhibit a black color and are opaque. In one or more embodiments, the crystallizable glasses and glass-ceramics include a precursor glass composition that exhibits a liquidus viscosity of greater than about 20 kPa*s. The glass-ceramics exhibit less than about 20 wt % of one or more crystalline phases, which can include a plurality of crystallites in the Fe2O3—TiO2—MgO system and an area fraction of less than about 15%. Exemplary compositions used in the crystallizable glasses and glass-ceramics include, in mol %, SiO2 in the range from about 50 to about 76, Al2O3 in the range from about 4 to about 25, P2O5+B2O3 in the range from about 0 to about 14, R2O in the range from about 2 to about 20, one or more nucleating agents in the range from about 0 to about 5, and RO in the range from about 0 to about 20.
Abstract:
Embodiments of the present disclosure pertain to crystallizable glasses and glass-ceramics that exhibit a black color and are opaque. In one or more embodiments, the crystallizable glasses and glass-ceramics include a precursor glass composition that exhibits a liquidus viscosity of greater than about 20 kPa*s. The glass-ceramics exhibit less than about 20 wt % of one or more crystalline phases, which can include a plurality of crystallites in the Fe2O3—TiO2—MgO system and an area fraction of less than about 15%. Exemplary compositions used in the crystallizable glasses and glass-ceramics include, in mol %, SiO2 in the range from about 50 to about 76, Al2O3 in the range from about 4 to about 25, P2O5+B2O3 in the range from about 0 to about 14, R2O in the range from about 2 to about 20, one or more nucleating agents in the range from about 0 to about 5, and RO in the range from about 0 to about 20.