Abstract:
The glass containers described herein have at least two performance attributes selected from resistance to delamination, improved strength, and increased damage resistance. In one embodiment, a glass container may include a body having an inner surface, an outer surface and a wall thickness extending between the outer surface and the inner surface. A compressively stressed layer may extend from the outer surface of the body into the wall thickness. The compressively stressed layer may have a surface compressive stress greater than or equal to 150 MPa. A lubricous coating may be positioned around at least a portion of the outer surface of the body. The outer surface of the body with the lubricous coating may have a coefficient of friction less than or equal to 0.7.
Abstract:
Delamination resistant glass containers with heat-tolerant coatings are disclosed. In one embodiment, a glass container may include a glass body having an interior surface, an exterior surface and a wall thickness extending from the exterior surface to the interior surface. At least the interior surface of the glass body is delamination resistant. The glass container may further include a heat-tolerant coating positioned on at least a portion of the exterior surface of the glass body. The heat-tolerant coating may be thermally stable at temperatures greater than or equal to 260° C. for 30 minutes.
Abstract:
The embodiments described herein relate to chemically and mechanically durable glass compositions and pharmaceutical packaging formed from the same. According to one embodiment, a glass for pharmaceutical packaging includes from about 70 mol. % to about 80 mol. % SiO2; from about 4 mol. % to about 8 mol. % alkaline earth oxide, the alkaline earth oxide comprising MgO and CaO; X mol. % Al2O3, wherein X is from about 4 to about 8; and Y mol. % alkali oxide comprising non-zero amounts of Na2O and K2O, wherein Y is about 9-15 mol. % and a ratio of Y:X is greater than 1.
Abstract:
The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In another embodiment, a glass composition may include from about 70 mol. % to about 80 mol. % SiO2; from about 3 mol. % to about 13 mol. % alkaline earth oxide; X mol. % Al2O3; and Y mol. % alkali oxide. The alkali oxide may include Na2O in an amount greater than about 8 mol. %. A ratio of Y:X may be greater than 1 and the glass composition may be free of boron and compounds of boron. In some embodiments, the glass composition may also be free of phosphorous and compounds of phosphorous. Glass articles formed from the glass composition may have at least a class S3 acid resistance according to DIN 12116, at least a class A2 base resistance according to ISO 695, and a type HGA1 hydrolytic resistance according to ISO 720.
Abstract:
The glass containers described herein have at least two performance attributes selected from resistance to delamination, improved strength, and increased damage resistance. In one embodiment, a glass container with resistance to delamination and improved strength may include a body having an inner surface, an outer surface and a wall thickness extending between the outer surface and the inner surface. At least the inner surface of the body may have a delamination factor less than or equal to 10. The glass container may further include a compressively stressed layer extending from the outer surface of the body into the wall thickness. The compressively stressed layer may have a surface compressive stress greater than or equal to 150 MPa.
Abstract:
The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In another embodiment, a glass composition may include from about 70 mol. % to about 80 mol. % SiO2; from about 3 mol. % to about 13 mol. % alkaline earth oxide; X mol. % Al2O3; and Y mol. % alkali oxide. The alkali oxide may include Na2O in an amount greater than about 8 mol. %. A ratio of Y:X may be greater than 1 and the glass composition may be free of boron and compounds of boron. In some embodiments, the glass composition may also be free of phosphorous and compounds of phosphorous. Glass articles formed from the glass composition may have at least a class S3 acid resistance according to DIN 12116, at least a class A2 base resistance according to ISO 695, and a type HGA1 hydrolytic resistance according to ISO 720.
Abstract:
The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In embodiments, the glass composition may include 74-78 mol. % SiO2; X mol. % Al2O3, wherein X is 5-7; alkaline earth oxide comprising MgO and CaO, wherein: CaO is 0.1-1.0 mol. %; MgO is 4-7 mol. %; and a ratio (CaO (mol. %)/(CaO (mol. %)+MgO (mol. %)) is less than or equal to 0.5. The glass composition may further include Y mol. % alkali oxide, wherein the alkali oxide comprises 9-13 mol. % Na2O and less than or equal to 0.4 mol. % of a fining agent. The glass composition may be free of boron and compounds of boron.
Abstract:
A coated glass pharmaceutical package includes a glass body having a Type 1 chemical durability according to USP 660, at least a class A2 base resistance or better according to ISO 695, and at least a type HGB2 hydrolytic resistance or better according to ISO 719, the glass body having an interior surface and an exterior surface and a wall extending therebetween. A lubricous coating having a thickness of less than or equal to 90 nm may be positioned on at least a portion of the exterior surface of the glass body but not on any portion of the interior surface. The portion of the coated glass package with the lubricous coating comprises a coefficient of friction that is at least 20% less than an uncoated glass package and the coefficient of friction does not increase by more than 30% after undergoing a depyrogenation cycle including exposure to a temperature of 250° C. for a time period of 30 minutes. A horizontal compression strength of the coated glass package is at least 10% greater than an uncoated glass package and the horizontal compression strength is not reduced by more than 20% after undergoing the depyrogenation cycle including exposure to a temperature of 250° C. for a time period of 30 minutes and then being abraded. The lubricous coating comprises a polymer.
Abstract:
Embodiments of glass containers resistant to delamination and methods for forming the same are disclosed. According to one embodiment, a delamination resistant glass container may include a glass article having a body extending between an interior surface and an exterior surface. The body defines an interior volume. The body may include an interior region extending from 10 nm below the interior surface of the body into a thickness of the body. The interior region has a persistent layer homogeneity such that the body is resistant to delamination.
Abstract:
A delamination resistant glass pharmaceutical container may include a glass body comprising a borosilicate glass having a Type 1 chemical durability according to USP . At least an inner surface of the glass body may have a delamination factor less than or equal to 10. A thermally stable coating may be positioned around at least a portion of the outer surface of the glass body. The thermally stable coating may be an outermost coating on the outer surface of the glass body and the outer surface of the glass body with the thermally stable coating has a coefficient of friction less than or equal to 0.7. The thermally stable coating comprising at least one of a metal nitride coating, a metal oxide coating, a metal sulfide coating, SiO2, diamond-like carbon, graphene, and a carbide coating.