Abstract:
A crankcase ventilation system having a crankcase ventilation filter and a filter drain. The crankcase ventilation filter vents blow-by gases from a crankcase and separates oil from the blow-by gases. The crankcase ventilation filter drain collects oil separated by the crankcase ventilation filter and returns the separated oil to the crankcase or another component of the engine. A nozzle is coupled to a pressurized oil supply and directs an oil jet into a mixing bore of the system, which draws the oil back into recirculation. A valve is coupled to the filter drain and is configured to prevent collected oil from reentering the crankcase ventilation filter through an opening that connects the filter drain to the filter.
Abstract:
Rotating coalescer elements that maximize the radial-projected separation surface area in a given (rotating) cylindrical volume, where flow to be cleaned is passing axially upward or downward through a separating media of the rotating coalescer element. Various example package assemblies are provided with various types of rotating configurations including cylindrical coiled media packs, frustum coiled media packs, concentric cylinders, coiled metal or polymer films with and without perforations, and/or alternating layers of different materials. The described rotating coalescers may be driven by hydraulic turbine, electric motor, belt, gear or by mounting on rotating machine components, such as rotating engine shafts or connected components.
Abstract:
A filter element for filtering a fluid that comprises a pleated filter media and a support structure. The pleated filter media comprises pleats that define an upstream gap along an upstream surface of the pleated filter media and a downstream gap along a downstream surface of the pleated filter media. The support structure extends along the downstream surface of the pleated filter media and supports the pleats. The support structure is folded into two layers comprising a first layer and a second layer within the downstream gap. The first layer inner surface and the second layer inner surface are positioned adjacent to each other within the downstream gap. The support structure comprises at least one spacer that increases a distance between the first layer outer surface and the second layer outer surface such that the differential pressure drop through portion of the support structure that is within the downstream gap is decreased.
Abstract:
Systems and methods for detecting a missing coalescing element in a CV system are described. In some arrangements, the described systems and methods prevent the assembly and/or re-assembly of the CV system without an appropriate coalescing element positioned within the CV system housing (e.g., during a coalescing element service operation). In some arrangements, the coalescing element depresses a spring-loaded component of a shaft that provides flow of bypass gases to the CV system. If the spring-loaded component is not depressed, significant restriction is introduced to the CV system, and an on-board-diagnostic system may detect high-crankcase pressure through existing crankcase pressure sensors and de-rate the internal combustion engine. In other arrangements, a spring-loaded mechanism within the shaft prevents a housing cover (e.g., a lid to the housing of the CV system) from being repositioned when a coalescing element is not installed within the housing.
Abstract:
Rotating coalescer elements that maximize the radial-projected separation surface area in a given (rotating) cylindrical volume, where flow to be cleaned is passing axially upward or downward through a separating media of the rotating coalescer element. Various example package assemblies are provided with various types of rotating configurations including cylindrical coiled media packs, frustum coiled media packs, concentric cylinders, coiled metal or polymer films with and without perforations, and/or alternating layers of different materials. The described rotating coalescers may be driven by hydraulic turbine, electric motor, belt, gear or by mounting on rotating machine components, such as rotating engine shafts or connected components.
Abstract:
Filtration systems having a tangential air cleaner having a coiled media filter element and a cyclonic pre-cleaner are described. An outer wall of the filter element acts as a pre-cleaner sleeve of the housing to generate a cyclonic flow of the intake air prior to the intake air being filtered by the filter element. The housing cover includes geometry that redirects the cyclonic flow from a tangential path to an axial, straight-through flow directed through an inlet flow face of the filter element. Various embodiments of such filtration systems offer increased filter performance and capacity compared to similarly sized cylindrical pleated filter elements having a radial flow filtering path.
Abstract:
Rotating coalescer crankcase ventilation (CV) systems are described. The described CV systems utilize a pumping pressure created by the porous media of the rotating coalescer to maintain positive recirculation of filtered blowby gases through a potential leak gap between a static housing inlet and a spinning component of the rotating coalescer. In some arrangements, the porous media is fibrous media. The filter media may be pleated or non-pleated. The positive recirculation caused by the pressure balance prevents unfiltered blowby gases from bypassing the media of the rotating coalescer from the upstream side to the downstream side of the filter media through the gap. During operation, the pressure balance between the upstream side and downstream side of the filter media maintains the positive recirculation, which in turn maintains a high filtration efficiency.
Abstract:
A crankcase ventilation system having a heat transfer conduit included therein. The system includes a housing and a crankcase ventilation filter element within the housing, the crankcase ventilation filter element configured to separate oil and oil aerosol from blow-by gases from a crankcase. An oil inlet is configured to receive pressurized oil from a component of an internal combustion engine. The conduit is positioned within the housing. The conduit is positioned along a length of the housing and is configured to carry the pressurized oil from the oil inlet to a component of the crankcase ventilation system. The conduit is configured to transfer thermal energy from the pressurized oil to the housing. An oil outlet is configured to return the pressurized oil to the crankcase.
Abstract:
Rotating coalescer elements that maximize the radial-projected separation surface area in a given (rotating) cylindrical volume, where flow to be cleaned is passing axially upward or downward through a separating media of the rotating coalescer element. Various example package assemblies are provided with various types of rotating configurations including cylindrical coiled media packs, frustum coiled media packs, concentric cylinders, coiled metal or polymer films with and without perforations, and/or alternating layers of different materials. The described rotating coalescers may be driven by hydraulic turbine, electric motor, belt, gear or by mounting on rotating machine components, such as rotating engine shafts or connected components.
Abstract:
Rotating coalescer elements that maximize the radial-projected separation surface area in a given (rotating) cylindrical volume, where flow to be cleaned is passing axially upward or downward through a separating media of the rotating coalescer element. Various example package assemblies are provided with various types of rotating configurations including cylindrical coiled media packs, frustum coiled media packs, concentric cylinders, coiled metal or polymer films with and without perforations, and/or alternating layers of different materials. The described rotating coalescers may be driven by hydraulic turbine, electric motor, belt, gear or by mounting on rotating machine components, such as rotating engine shafts or connected components.