Abstract:
An axial flow element for use in a liquid separation system for an internal combustion engine includes a hub, a groove, a locking member, and a flat layer. The hub includes a cylindrical outer surface. The groove is disposed in the outer surface. The groove extends in a substantially longitudinal direction along the hub from a first end of the hub to a second end of the hub. The locking member is disposed in the groove. The flat layer is disposed between the hub and the locking member.
Abstract:
A rotating coalescer having an ejected coalesced liquid separating device is described. The separating device prevents re-entrainment of liquid into a stream of filtered gas. The rotating coalescer includes a rotating filter element or coalescing cone stack positioned within a rotating coalescer housing. The outer surface of the rotating filter element or the outlet of the coalescing cone stack is displaced from the inner surface of the rotating coalescer housing. The gap between the rotating filter element or the coalescing cone stack and the rotating coalescer housing allows for ejected coalesced liquid, such as oil, to accumulate on the inner surface of the rotating coalescer housing for drainage and allows for filtered gas, such as air, to exit through a clean gas outlet of the rotating coalescer housing.
Abstract:
A rotating separator has a housing preventing separated liquid carryover. A plenum between the annular rotating separating filter element and the housing sidewall has one or more flow path separating guides minimizing the flow of separated liquid to the outlet. The flow path guides may include one or more fins and/or swirl flow dampers and/or a configured surface.
Abstract:
A filter apparatus is described that has a torque limiting device, which may be a clutch mechanism, and which provides a protective function for a filter, so as to protect a filter from being over tightened and to thereby prevent damage to filter components. The clutch mechanism can also eliminate or reduce the need for torque measurement of certain filter components. The clutch mechanism can be located on one of the fluid filter, a filter head which engages the fluid filter, or a combination of both the fluid filter and the filter head.
Abstract:
An internal combustion engine crankcase ventilation rotating coalescer includes an annual rotating coalescing filter element, an inlet port supplying blow by gas from the crankcase to the hollow interior of the annular rotating coalescing filter element, and an outlet port delivering clean separated, air from the exterior of the rotating element. The direction of flow by gas inside-out, radially, outwardly from the hollow interior to the exterior.
Abstract:
Rotating coalescer crankcase ventilation (CV) systems are described. The described CV systems utilize a pumping pressure created by the porous media of the rotating coalescer to maintain positive recirculation of filtered blowby gases through a potential leak gap between a static housing inlet and a spinning component of the rotating coalescer. In some arrangements, the porous media is fibrous media. The filter media may be pleated or non-pleated. The positive recirculation caused by the pressure balance prevents unfiltered blowby gases from bypassing the media of the rotating coalescer from the upstream side to the downstream side of the filter media through the gap. During operation, the pressure balance between the upstream side and downstream side of the filter media maintains the positive recirculation, which in turn maintains a high filtration efficiency.
Abstract:
Rotating coalescer crankcase ventilation (CV) systems are described. The described CV systems utilize a pumping pressure created by the porous media of the rotating coalescer to maintain positive recirculation of filtered blowby gases through a potential leak gap between a static housing inlet and a spinning component of the rotating coalescer. In some arrangements, the porous media is fibrous media. The filter media may be pleated or non-pleated. The positive recirculation caused by the pressure balance prevents unfiltered blowby gases from bypassing the media of the rotating coalescer from the upstream side to the downstream side of the filter media through the gap. During operation, the pressure balance between the upstream side and downstream side of the filter media maintains the positive recirculation, which in turn maintains a high filtration efficiency.
Abstract:
A filter element comprises a filter media and a restriction indicator device. The restriction indicator device comprises an attachment portion and a movable portion. The attachment portion is attachable to a portion of the filter assembly. The movable portion is movable relative to the attachment portion between a non-buckled position and a buckled position. The movable portion moves from the non-buckled position to the buckled position once a predetermined pressure drop between an upstream side and a downstream side of the movable portion of the restriction indicator device is met.
Abstract:
A filter that is retained in a shell housing by the use of a snap connection. The filter includes an endplate having snap features that interact with a groove in an inner portion of the shell housing. The groove may extend 360 degrees around an inner circumference of the shell housing. Accordingly, when the shell is unthreaded from the head service (e.g., during a filter replacement service), the shell only needs to be displaced the length of the inner radial seal interface between the shell and the head, not the entire length of the filter media thereby minimizing the stroke length needed to service the filter assembly.
Abstract:
A separation assembly comprises a housing, a jet that expels a fluid within the housing, and a turbine assembly positioned within the housing and positioned so as to be contacted by the fluid expelled from the jet. The fluid causes the turbine assembly to rotate about a center rotational axis within the housing. The turbine assembly comprises a first turbine portion and a second turbine portion that are separately formed from each other and attachable together. The first turbine portion comprises a plurality of first vanes and the second turbine portion comprises a plurality of second vanes.