Abstract:
Operating an engine system and fuel system includes energizing a solenoid actuator for a spill valve in a fuel injector in a first engine cycle via a standard waveform to inject a shot of fuel. Operating an engine system and fuel system further includes determining suitability for reduced energy operating of the fuel system, and energizing the solenoid actuator via a reduced energy waveform based on the determining suitability so as to inject one or more shots of fuel in a second engine cycle. The operating methodology and control logic can extend an engine speed range for multi-shot fuel injection in an engine.
Abstract:
Fuel is injected by energizing a solenoid of a fuel injector for an on-time that terminates at a first end-of-current timing. An end-of-current trim is determined at least in part by estimating a duration between an induced current event in a circuit of the solenoid and a valve/armature interaction event. An induced current event occurs when an armature abruptly stops, and a valve/armature interaction event occurs when the armature couples with or de-couples from the valve member. Fuel is injected in a subsequent injection event by adjusting the end-of-current timing by the end-of-current trim.
Abstract:
A cryogenic hydraulic reciprocating piston pump includes a casing which defines a piston chamber. The sidewall of the piston chamber includes a retraction spill port as well as a pumping spill port. At the end of a retraction stroke, a retraction spill passageway that extends through the piston becomes aligned with the retraction spill port and fluid is communicated from the pressurized side of the piston to the unpressurized side of the piston to stop the retraction stroke before the piston “bottoms out”. Similarly, at the end of a pumping stroke, a pumping spill passageway that extends through the piston becomes aligned with the pumping spill port which provides communication between the pressurized side of the piston and the unpressurized side of the piston thereby stopping movement of the piston before it “bottoms out”.
Abstract:
A system, related method and computer program product are disclosed for controlling fuel mass of CNG received by an engine. The system may comprise a heat exchanger configured to receive CLNG and supply coolant and to output CNG and return coolant, an injector configured to inject CNG into the engine, a gas line between the injector and heat exchanger, a control valve configured to receive return coolant from the heat exchanger and to change the amount of return coolant flowing through control valve, and a controller connected to the control valve. The gas line may be configured to carry CNG from the heat exchanger to the injector. The controller may be configured to maintain a Gas Line Temperature within an operating range by adjusting the amount of return coolant flowing through the control valve based, at least in part, on the Gas Line Temperature and a Target Return Coolant Temperature.
Abstract:
Fuel is injected by energizing a solenoid of a fuel injector for an on-time that terminates at a first end-of-current timing. An end-of-current trim is determined at least in part by estimating a duration between an induced current event in a circuit of the solenoid and a valve/armature interaction event. An induced current event occurs when an armature abruptly stops, and a valve/armature interaction event occurs when the armature couples with or de-couples from the valve member. Fuel is injected in a subsequent injection event by adjusting the end-of-current timing by the end-of-current trim.