Abstract:
A fuel injector includes an injector body and a valve stack within the injector body that includes a valve seat plate. The valve seat plate includes a pressure control passage for controlling fuel injection, and a valve seat positioned fluidly between the pressure control passage and a low-pressure drain. The valve seat plate includes a pressure-limiting annular groove that extends circumferentially around the valve seat and axially inward from a side of the valve seat plate where the valve seat is located. The groove enables deformation in response to pressure differences across the valve seat plate in a manner that limits stress concentrations.
Abstract:
A method for controlling a stroke velocity in a pump includes using a sensor to detect a start of a pump stroke and an end of the pump stroke. A stroke time is calculated, the stroke time being a time period between the start of the pump stroke and the end of the pump stroke. The stroke velocity is calculated based on a stroke length and the stroke time. The stroke velocity is compared to a reference stroke velocity. A hydraulic supply pressure to the pump is increased if the calculated stroke velocity is less than the reference stroke velocity, and the hydraulic supply pressure is decreased if the calculated stroke velocity is more than the reference stroke velocity.
Abstract:
A drive system for a cryogenic pump is provided including a spool housing having a plurality of valves disposed therein about a pump axis and a tappet housing including a plurality of tappet bores, each tappet bore in communication with a respective one of the plurality of valves. A collection cavity collects hydraulic fluid from the tappet bores. A pump flange includes a fluid inlet and a fluid outlet. An inlet manifold directs hydraulic fluid received through the fluid inlet to each of the plurality of valves. An outlet manifold directs hydraulic fluid from each of the valves and the collection cavity to the fluid outlet.
Abstract:
An aftertreatment assembly is disclosed. The aftertreatment assembly includes a housing including an inlet and an outlet. A chamber is disposed downstream of the inlet, and is axially to the inlet. At least one bank of catalyst module is disposed downstream of the chamber, and is extending laterally from the chamber. A plenum is disposed over the chamber, and is extending laterally from the at least one bank of catalyst module. At least one first sealing member is disposed between the at least one bank of catalyst module and the chamber and the plenum. The at least one first sealing member having a first portion and a second portion between the plenum and the chamber.
Abstract:
A dual fuel engine utilizes a compression ignited pilot injection of liquid diesel fuel to ignite a mixture of gaseous fuel and air in each engine cylinder. The gaseous fuel is injected at a relatively low pressure directly into the engine cylinder from a fuel injector. The liquid diesel fuel is injected directly into the engine cylinder from the same fuel injector. In-cylinder dynamic gas blending during the compression stroke can reduce potential hydrocarbon slip that could occur when unburned fuel resides in crevice volumes within the engine cylinder.
Abstract:
A system includes a main engine operating on gaseous fuel from a tank. An auxiliary engine operates using gaseous fuel vented from the tank. A first exhaust passage receives a first stream of exhaust gas from the main engine. A second exhaust passage receives exhaust gas from the auxiliary engine, which passes through an ammonia-producing catalyst. A third exhaust passage is fluidly connected to the first and second exhaust passages and routes exhaust gas through a NOx reducing catalyst. The system operates such that a mass flow of ammonia generated by the ammonia-producing catalyst substantially matches a total mass flow of NOx gas in the third exhaust passage that is treated within the ammonia-producing catalyst.
Abstract:
A fuel injector includes an injector body and a valve stack within the injector body that includes a valve seat plate. The valve seat plate includes a pressure control passage for controlling fuel injection, and a valve seat positioned fluidly between the pressure control passage and a low-pressure drain. The valve seat plate includes a pressure-limiting annular groove that extends circumferentially around the valve seat and axially inward from a side of the valve seat plate where the valve seat is located. The groove enables deformation in response to pressure differences across the valve seat plate in a manner that limits stress concentrations.