摘要:
Method for recovering a desired component from a waste gas comprising (a) at an operating facility, introducing a waste gas comprising the desired component and one or more undesired components into an adsorber containing adsorbent material selective for the desired component, adsorbing at least a portion of the desired component therein, (b) terminating flow of waste gas into the adsorber; and (c) recovering and concentrating the desired component by either (1) isolating the adsorber, transporting the adsorber to a central processing facility, or (2) withdrawing from the adsorber an intermediate gas enriched in the desired component, compressing the intermediate gas and storing it in a vessel, isolating the vessel, transporting the vessel to a central processing facility to provide a concentrated product further enriched in the desired component.
摘要:
Process solutions comprising one or more surfactants are used to reduce the number of defects in the manufacture of semiconductor devices. In certain embodiments, the process solution may reduce post-development defects such as pattern collapse or line width roughness when employed as a rinse solution either during or after the development of the patterned photoresist layer. Also disclosed is a method for reducing the number of defects such as pattern collapse and/or line width roughness on a plurality of photoresist coated substrates employing the process solution of the present invention.
摘要:
A system and a process for providing acetylene, preferably at a high purity level (e.g., comprising 100 parts per million (“ppm”), or 10 ppm, or 1 ppm, or 100 parts per billion (“ppb”), or 10 ppb, or 1 ppb or less of solvent), to a point of use, such as a semiconductor manufacturing process, is described herein. In one aspect, there is provided a process for providing a process for providing a high purity acetylene comprising 100 ppm or less solvent to a point of use comprising: providing an acetylene feed stream comprising acetylene and solvent at a temperature ranging from 20° C. to −50° C.; and introducing the acetylene feed stream to a purifier at a temperature ranging from −50° C. to 30° C. to remove at least a portion of the solvent contained therein and provide the high purity acetylene.
摘要:
Low dielectric materials and films comprising same have been identified for improved performance when used as interlevel dielectrics in integrated circuits as well as methods for making same. In one aspect of the present invention, an organosilicate glass film is exposed to an ultraviolet light source wherein the film after exposure has an at least 10% or greater improvement in its mechanical properties (i.e., material hardness and elastic modulus) compared to the as-deposited film.