摘要:
A method of making an electrode ink containing nanostructured catalyst elements is described. The method comprises providing an electrocatalyst decal comprising a carrying substrate having a nanostructured thin catalytic layer thereon, the nanostructure thin catalytic layer comprising nanostructured catalyst elements; providing a transfer substrate with an adhesive thereon; transferring the nanostructured thin catalytic layer from the carrying substrate to the transfer substrate; removing the nanostructured catalyst elements from the transfer substrate; providing an electrode ink solvent; and dispersing the nanostructured catalyst elements in the electrode ink solvent. Electrode inks, coated substrates, and membrane electrode assemblies made from the method are also described.
摘要:
A method of transferring nanostructured thin catalytic layers to a gas diffusion layer and thus making a catalyst coated diffusion media is described. The method includes treating the gas diffusion layer with a temporary adhesive to temporarily increase the adhesion strength within the microporous layer and to carbon fiber paper substrate, transferring the nanostructured thin catalytic layer to the microporous side of a gas diffusion media layer. The nanostructured thin catalytic layer can then be further processed, including adding additional components or layers to the nanostructured thin catalytic layer on the gas diffusion media layer. Preparation of catalyst coated diffusion media and a catalyst coated diffusion media based membrane electrode assembly (MEA) are also described.
摘要:
A method of transferring a nanostructured thin catalytic layer from its carrying substrate to a porous transfer substrate and further processing and restructuring the nanostructured thin catalytic layer on the porous transfer substrate is provided. The method includes transferring the nanostructured catalytic layer from its carrying substrate to a transfer substrate. The nanostructured catalytic layer then is processed and reconstructed, including removing the residual materials and adding additional components or layers to the nanostructured catalytic layer, on the transfer substrate. Methods of fabricating catalyst coated membranes with the reconstructed electrode including the nanostructured thin catalytic layer, reconstructed electrode decals, and catalyst coated proton exchange membranes are also described.
摘要:
Specially prepared gas diffusion media improve the performance of PEM fuel cells. The media are made by first dipping an electrically conductive porous material such as carbon fiber paper into a suspension of hydrophobic polymer and drying the paper to create a desired deposition pattern of hydrophobic polymer on the substrate. Then a paste containing a fluorocarbon polymer and carbon particles is applied to a desired side of the substrate, and thereafter the paste and hydrophobic polymer are sintered together at high temperature on the paper. In particular, nonionic surfactants remain on the carbon fiber paper after the initial hydrophobic polymer is applied to the electrically conductive porous material. When the paste is coated on the dried paper, the paste is in contact with a hydrophilic surface.
摘要:
Favorable performance of diffusion media in fuel cells has found to be correlated to a parameter (the C/F ratio) that relates to a spatial and thickness distribution of the hydrophobic fluoropolymer on the carbon fiber substrate structure of the medium. Suitable diffusion media may be chosen from among commercially coated diffusion media by measuring the C/F ratio by means of energy dispersive spectroscopy, and choosing the diffusion media if the value of the C/F ratio is within the preferred range. Alternatively, the diffusion media may be manufactured with an improved process that consistently yields values of C/F ratio in the desired range.
摘要:
A gas diffusion media for a fuel cell, such as a proton exchange membrane fuel cell, is provided. The gas diffusion media includes carbonizable acrylic pulp fibers instead of conventional phenolic resin as a binder material. The acrylic fibers are mixed with the carbon fiber dispersion during the papermaking step, thus eliminating the phenolic resin impregnation step typically associated with conventional gas diffusion media manufacturing processes. The mat is then cured and carbonized to produce gas diffusion media.
摘要:
A diffusion medium for use in a PEM fuel cell contains hydrophobic and hydrophilic areas for improved water management. A hydrophobic polymer such as a fluororesin is deposited on the paper to define the hydrophobic areas, and an electroconductive polymer such as polyaniline or polypyrrole is deposited on the papers defining the hydrophilic areas. In various embodiments, a matrix of hydrophobic and hydrophilic areas on the carbon fiber based diffusion media is created by electropolymerization of a hydrophilic polymer onto a diffusion medium which has been previously coated with a hydrophobic polymer such as a fluorocarbon polymer. When an aqueous solution containing monomers for electropolymerization is contacted with a fluorocarbon coated diffusion medium, the hydrophilic polymer will be preferentially deposited on areas of the carbon fiber based diffusion medium that are not covered by the fluorocarbons.
摘要:
A gas diffusion layer for a fuel cell is described. The gas diffusion layer includes a carbon fiber mat having a substantially open structure. Bloomed fibrillated acrylic pulp is added into a microporous layer ink. Alternatively, the bloomed fibrillated acrylic pulp can first be disposed on the carbon fiber mat, with the microporous layer ink added thereafter. When the microporous layer ink/bloomed fibrillated acrylic pulp mixture is coated on the carbon fiber mat, the ink penetrates through the open substrate, and is locked into place by the bloomed acrylic pulp fibers. This allows for a buildup of microporous layer ink on top of the substrate for added thickness when the bloomed fibrillated acrylic pulp sits on top of the mat.
摘要:
The present invention provides a fuel cell having a first diffusion and a second diffusion media having a membrane electrode assembly disposed therebetween. The first diffusion media includes a first set of material characteristics and the second diffusion media includes a second set of material characteristics. The first set of material characteristics has at least one material characteristic substantially different from those same material characteristics of the second set of material characteristics. The difference in material characteristics provides for enhancing water management across a major face of the second diffusion media.
摘要:
Fuel cells contain diffusion media having vapor-deposited fluorocarbon polymers on a conductive substrate. A diffusion medium for use in a PEM fuel cell contains hydrophobic and hydrophilic areas for improved water management. A hydrophobic polymer such as a fluororesin is vapor deposited on the paper to define the hydrophobic areas; hydrophilic areas are those areas uncovered by hydrophobic polymer, or covered by an additionally deposited hydrophilic polymer