Abstract:
An integrated circuit comprising processing logic for operably coupling to radio frequency (RF) receiver circuitry arranged to receive a wireless network signal. The receiver circuitry generates in-phase and quadrature digital baseband representations of the wireless network signal. The processing logic determines quadrature (I/Q) imbalance of the RF receiver circuitry based on the in-phase and quadrature digital baseband representations of the wireless network signal.
Abstract:
A semiconductor device comprising interface logic for transmitting data bursts across an interface. The interface logic is arranged to transmit bursts of data across the interface such that the start of a burst of data is substantially aligned with a symbol interval (SI) boundary. The interface logic is further arranged to apply an offset to the SI boundary at the start of the burst of data.
Abstract:
Receiver circuitry for processing a received Very Low Intermediate Frequency signal wherein the receiver circuitry comprises a main processing path. The main processing path comprises mixing circuitry arranged to mix a received VLIF signal with a frequency down conversion signal to produce a main path signal. The receiver circuitry further comprises a direct current cancellation path comprising mixing circuitry arranged to mix a DC element of the received VLIF signal with the frequency down conversion signal to produce a DC cancellation signal. The receiver circuitry still further comprises signal summing circuitry arranged to add the DC cancellation signal in anti-phase with the main path signal.
Abstract:
An electronic device comprises a number of sub-systems coupled via an interface. One of the number of sub-systems comprises logic for receiving a frame of input data having a plurality of phases on respective data paths. The electronic device further comprises logic for performing cross correlation on the received input data with a pre-determined bit pattern, operably coupled to selection logic, for selecting a single phase from the plurality of phases sent to the interface to sample the received input data in a middle region of a data bit period in response to the cross correlation.
Abstract:
A wireless network element is operably couplable to an antenna array for communicating with at least one remote wireless communication unit. The antenna array comprises a plurality of radiating elements where at least one first radiating element of the plurality of radiating elements is arranged to create a radiation pattern in a sector of a communication cell. The wireless network element comprises a receiver arranged to receive and process at least one signal from the at least one remote wireless communication unit via the at least one first radiating element. The wireless network element also comprises a beam scanning module for stepping/sweeping the radiation pattern through the sector of the communication cell, such that at least one signal from the at least one remote wireless communication unit is processed to identify signal parameters representative of incoming signal power and angle of arrival of the received at least one signal.
Abstract:
A calibration signal generator for use in a balancing circuit calibration device in a radio receiver, the calibration signal generator comprising: a means of amplifying a clocking signal from a clocking signal generator to provide a first calibration signal; a means of generating a second calibration signal from the clocking signal, the first and second calibration signals being transmissible to a one or more mixing circuits in the balancing circuit calibration device; and a means synchronising the operation of other circuit elements in the balancing circuit calibration device with the clocking signal; characterised in that the clocking signal generator is present in the radio receiver and used therein for other functions.
Abstract:
A wireless communication device comprises a number of sub-systems and clock generation logic arranged to generate at least one clock signal to be applied to the number of sub-systems. One of the number of sub-systems comprises sampling logic for receiving input data and performing initial sampling on an input data bit using multiple separated phases of a clock period of the at least one clock signal applied to the sampling logic thereby producing multiple phase separated sampled outputs of the input data bit. The sampling logic is configured to perform a number of re-sampling operations on the multiple phase separated sampled outputs at a number of intermediate phases thereby producing multiple phase separated intermediate sampled outputs prior to performing a final sample of the multiple phase separated intermediate sampled outputs at a single phase of the at least one clock signal to produce a sampled input data signal.
Abstract:
A wireless network element is operably couplable to an antenna array for communicating with at least one remote wireless communication unit. The antenna array comprises a plurality of radiating elements where at least one first radiating element of the plurality of radiating elements is arranged to create a radiation pattern in a sector of a communication cell. The wireless network element comprises a receiver arranged to receive and process at least one signal from the at least one remote wireless communication unit via the at least one first radiating element. The wireless network element also comprises a beam scanning module for stepping/sweeping the radiation pattern through the sector of the communication cell, such that at least one signal from the at least one remote wireless communication unit is processed to identify signal parameters representative of incoming signal power and angle of arrival of the received at least one signal.
Abstract:
A communication unit comprises a plurality of antenna element feeds (203, 205) for coupling to a plurality of antenna elements of an antenna array, where each antenna element feed comprises at least one coupler; and a plurality of transmitters operably coupled to the plurality of antenna element feeds. At least one transmitter of the plurality of transmitters comprises: an input for receiving a first signal and at least one second signal; beamformer logic arranged to apply independent beamform weights (RcfBF1, RcfBF2) on the first signal and the at least one second signal of the transmitter respectively, wherein each of the independent beamform weights is allocated on a per sector basis; and a signal combiner arranged to combine the first signal and the second signal to produce a combined signal, such as that the combined signal supports a plurality of sectored beams.
Abstract:
A network element for a wireless communication system is locatable to couple at least one base station to an antenna array comprising a plurality of antenna elements. The network element comprises a plurality of independent transceiver circuits coupled to at least one of a plurality of respective antenna elements of the antenna array; and logic arranged to apply at least one complex digital signal to at least one transceiver signal path of a transceiver circuit of the plurality of independent transceiver circuits. A feedback path is arranged to provide feedback of the at least one complex digital signal such that it is capable of facilitating determination of latency mismatch error response between at least two transceiver signal paths. Adjustment means comprises delay logic arranged to receive a complex digital signal and provide a modified representation of the received complex digital signal in response to the latency mismatch error response of the at least two transceiver signal path.