摘要:
A clock and data recovery (CDR) circuit includes a phase detector, a frequency accumulator, and a sequencer circuit. The phase detector generates a phase detect result signal in response to phase detection of a plurality of samples, which are generated by sampling a first data signal from a receiver using a sampling clock. The frequency accumulator accumulates, using a frequency register, frequency offset information from the phase detect result signal to generate an accumulated total. The frequency offset information is associated with a frequency difference between a first reference clock of the receiver and a second reference clock associated with the first data signal. The accumulated total is stored in the frequency register and provided from the frequency register for updating the sampling clock. The sequencer circuit is configured to perform a reset operation to reset the accumulated total in the frequency register based on a sequence of sequence elements.
摘要:
Apparatus and methods are provide for frame synchronization and clock and data recovery. In an example, a method can include receiving initial data of a stream of information, sampling the stream of information a plurality of times per unit interval to provide a plurality of sample intervals, integrating transition information for each sample interval, and selecting a sampling phase to sample each symbol of the stream of data using the integrated transition information.
摘要:
A clock and data recovery device includes a data sampling module, a phase detection circuit, a frequency estimator, a clock generation module, and a data recovery module. The data sampling module samples input data according to first clock signals to generate data values, in which phases of the first clock signals are different from one another. The phase detection circuit detects a phase error of the input data according to at least one second clock signal, to generate an error signal. The frequency estimator generates an adjustment signal according to the error signal, a phase threshold value, and a frequency threshold value. The clock generation module generates the first clock signals and the at least one second clock signal according to the adjustment signal and a reference clock signal. The data recovery module generates recovered data corresponding to the input data according to the data values.
摘要:
A circuit for performing clock recovery according to a received digital signal 30. The circuit includes at least an edge sampler 105 and a data sampler 145 for sampling the digital signal, and a clock signal supply circuit. The clock signal supply circuit provides edge clock 25 and data clock 20 signals offset in phase from one another to the respective clock inputs of the edge sampler 105 and the data sampler 145. The clock signal supply circuit is operable to selectively vary a phase offset between the edge and data clock signals.
摘要:
A method, algorithm, architecture, circuit and/or system that compensates for frequency difference in oversampled CDRs. The oversampled CDR uses a programmable divider whose division ratio is changed, for one or more cycles, from its usual division ratio, when accumulated phase movement in either direction exceeds a threshold. Accordingly, the elasticity buffer in oversampled CDRs can be made much smaller or entirely eliminated, resulting in less area, and reduced or eliminated dependence of max allowed burst size on ppm difference. The threshold can be kept programmable, and more than half unit interval, to provide robustness towards high frequency jitter.
摘要:
A data storage element comprises a master stage (MS) with a first and a second latch (LI, L2), an error stage (ES) and a slave stage (SLS). The first latch (LI) generates in a clocked fashion based on a clock signal (CLK, CLKT, CLKB) a first logical signal (DOUT1) based on an input signal (DATA) in relation to a first threshold level (TP1). The second latch generates (L2) in a clocked fashion based on the clock signal (CLK, CLKT, CLKB) a second logical signal (DOUT2) based on the input signal (DATA) in relation to a second threshold level (TP2). The second threshold level (TP2) is distinct from the first threshold level (TP1). The error stage provides an error signal (ER) with a first logical state if the first and the second logical signal (DOUT1 , DOUT2) have the same logical state, and with a second logical state they have different logical states. The slave stage (SLS) sets an output value (Q) of the data storage element to a common logical state of the first and the second logical signal (DOUT1 , DOUT2) when the error signal (ER) has the first logical state, and keeps the output value (Q) unchanged otherwise.
摘要:
A method, algorithm, architecture, circuit and/or system that compensates for frequency difference in oversampled CDRs. The oversampled CDR uses a programmable divider whose division ratio is changed, for one or more cycles, from its usual division ratio, when accumulated phase movement in either direction exceeds a threshold. Accordingly, the elasticity buffer in oversampled CDRs can be made much smaller or entirely eliminated, resulting in less area, and reduced or eliminated dependence of max allowed burst size on ppm difference. The threshold can be kept programmable, and more than half unit interval, to provide robustness towards high frequency jitter.
摘要:
An apparatus includes analog or mixed-signal circuitry that operates in response to a first signal, and digital circuitry that operates in response to a second signal. The apparatus further includes a signal retiming circuit. The signal retiming circuit retimes an output signal of a digital signal source to reduce interference between the digital circuitry and the analog or mixed-signal circuitry by retiming edges of the output signal of the digital signal source to fall on cycle boundaries of the first signal.
摘要:
A circuit for performing clock recovery according to a received digital signal 30. The circuit includes at least an edge sampler 105 and a data sampler 145 for sampling the digital signal, and a clock signal supply circuit. The clock signal supply circuit provides edge clock 25 and data clock 20 signals offset in phase from one another to the respective clock inputs of the edge sampler 105 and the data sampler 145. The clock signal supply circuit is operable to selectively vary a phase offset between the edge and data clock signals.
摘要:
A differential signal skew adjustment method includes: outputting a differential data signal including a first polarity signal and a second polarity signal from a transmission circuit in synchronization with a cycle of a reference clock; adjusting a phase of a detection clock obtained by dividing the reference clock in accordance with a phase of the first polarity signal; and adjusting a phase of the second polarity signal in accordance with an adjusted phase of the detection clock to adjust skew between the first polarity signal and the second polarity signal.