摘要:
A lighting system is disclosed. The lighting system comprises at least one light source comprising a light emitting diode (LED) and one or more phosphors optically coupled to the LED to convert at least a portion of original light emitted by the LED to provide a modified LED light having a first predetermined spectral output, and an optical material that is optically coupled to at least a portion of a surface of a light guide plate and optically coupled to receive at least a portion of the modified LED light and to convert at least a portion of the modified LED light to at least one predetermined wavelength to provide modified light having a second predetermined spectral output, wherein the optical material comprises one or more types of quantum confined semiconductor nanoparticle. A device including a lighting system is also disclosed.
摘要:
A solid state lighting device including a light source capable of emitting white light including a blue spectral component and having a deficiency in a spectral region, and an optical component that is positioned to receive at least a portion of the light generated by the light source, the optical component comprising an optical material for converting at least a portion of the blue spectral component of the light to one or more predetermined wavelengths such that light emitted by the solid state lighting device includes light emission from the light source supplemented with light emission at one or more predetermined wavelengths, wherein the optical material comprises quantum confined semiconductor nanoparticles. Also disclosed is lighting fixture, a cover plate for a lighting fixture and a method.
摘要:
A solid state lighting device including a light source capable of emitting white light including a blue spectral component and having a deficiency in a spectral region, and an optical component that is positioned to receive at least a portion of the light generated by the light source, the optical component comprising an optical material for converting at least a portion of the blue spectral component of the light to one or more predetermined wavelengths such that light emitted by the solid state lighting device includes light emission from the light source supplemented with light emission at one or more predetermined wavelengths, wherein the optical material comprises quantum confined semiconductor nanoparticles. Also disclosed is lighting fixture, a cover plate for a lighting fixture and a method.
摘要:
The present inventions relate to optical components which include quantum confined semiconductor nanoparticles, wherein at least a portion of the nanoparticles include a ligand attached to a surface thereof, the ligand being represented by the formula X-Sp-Z, wherein: X represents: a primary amine group, a secondary amine group, a urea, a thiourea, an imidizole group, an amide group, a carboxylic acid or carboxylate group, a phosphonic or arsonic acid group, a phosphoric acid group, a phosphate group, a phosphite group, a phosphinic acid group, a phosphinate group, a phosphine oxide group, a phosphinite group, a phosphine group, an arsenic acid group, an arsenate group, an arsenous acid group, an arsenite group, an arsinic acid group, an arsine oxide group, or an arsine group; Sp represents a group capable of allowing a transfer of charge or an insulating group; and Z represents a multifunctional group including three or more functional groups capable of communicating a specific property or chemical reactivity to the nanoparticle, wherein at least three of the functional groups are chemically distinct, and wherein Z is not reactive upon exposure to light. As used herein, the term “optical components” includes, but is not limited to, optical components, systems including optical components, lamps including optical components, devices including optical components, films useful in the foregoing, inks useful in making the foregoing, and compositions useful in the foregoing.
摘要:
A nanoparticle including an inorganic core comprising at least one metal and/or at least one semi-conductor compound comprising at least one metal includes a coating or shell disposed over at least a portion of a surface of the core. The coating can include one or more layers. Each layer of the coating can comprise a metal and/or at least one semiconductor compound. The nanoparticle further includes a ligand attached to a surface of the coating. The ligand is represented by the formula: X-Sp-Z, wherein: X represents: a primary amine group, a secondary amine group, a urea, a thiourea, an imidizole group, an amide group, a carboxylic acid or carboxylate group; a phosphoric acid group, a phosphate group, a phosphite group, a phosphinic acid group, a phosphinate group, a phosphine oxide group, a phosphinite group, a phosphine group, an arsenic acid group, an arsenate group, an arsenous acid group, an arsenite group, an arsinic acid group, an arsine oxide group, or an arsine group; Sp represents a group capable of allowing a transfer of charge or an insulating group; and Z represents a multifunctional group including three or more functional groups capable of communicating a specific property or chemical reactivity to the nanoparticle, wherein at least three of the functional groups are chemically distinct, and wherein Z is not reactive upon exposure to light. Compositions including a nanoparticle in accordance with the invention are also disclosed. Devices including nanoparticle and/or composition in accordance with the invention are disclosed. Methods for preparing nanoparticles in accordance with the invention are disclosed. Other products including a nanoparticle in accordance with the invention are also disclosed.
摘要:
The present inventions relate to optical components which include quantum confined semiconductor nanoparticles, wherein at least a portion of the nanoparticles include a ligand attached to a surface thereof, the ligand being represented by the formula X-Sp-Z, wherein: X represents: a primary amine group, a secondary amine group, a urea, a thiourea, an imidizole group, an amide group, a carboxylic acid or carboxylate group; a phosphoric acid group, a phosphate group, a phosphite group, a phosphinic acid group, a phosphinate group, a phosphine oxide group, a phosphinite group, a phosphine group, an arsenic acid group, an arsenate group, an arsenous acid group, an arsenate group, an arsinic acid group, an arsine oxide group, or an arsine group; Sp represents a group capable of allowing a transfer of charge or an insulating group; andZ represents a multifunctional group including three or more functional groups capable of communicating a specific property or chemical reactivity to the nanoparticle, wherein at least three of the functional groups are chemically distinct, and wherein Z is not reactive upon exposure to light. As used herein, the term “optical components” includes, but is not limited to, optical components, systems including optical components, lamps including optical components, devices including optical components, films useful in the foregoing, inks useful in making the foregoing, and compositions useful in the foregoing.
摘要:
A nanoparticle including an inorganic core comprising at least one metal and/or at least one semi-conductor compound comprising at least one metal includes a coating or shell disposed over at least a portion of a surface of the core. The coating can include one or more layers. Each layer of the coating can comprise a metal and/or at least one semiconductor compound. The nanoparticle further includes a ligand attached to a surface of the coating. The ligand is represented by the formula: X-Sp-Z, wherein: X represents: a primary amine group, a secondary amine group, a urea, a thiourea, an imidizole group, an amide group, a carboxylic acid or carboxylate group, a phosphonic or arsonic acid group, a phosphoric acid group, a phosphate group, a phosphite group, a phosphinic acid group, a phosphinate group, a phosphine oxide group, a phosphinite group, a phosphine group, an arsenic acid group, an arsenate group, an arsenous acid group, an arsenite group, an arsinic acid group, an arsine oxide group, or an arsine group; Sp represents a group capable of allowing a transfer of charge or an insulating group; and Z represents a multifunctional group including three or more functional groups capable of communicating a specific property or chemical reactivity to the nanoparticle, wherein at least three of the functional groups are chemically distinct, and wherein Z is not reactive upon exposure to light. Compositions including a nanoparticle in accordance with the invention are also disclosed. Devices including nanoparticle and/or composition in accordance with the invention are disclosed. Methods for preparing nanoparticles in accordance with the invention are disclosed. Other products including a nanoparticle in accordance with the invention are also disclosed.
摘要:
An optical component including an optical material comprising quantum confined semiconductor nanoparticles, wherein the optical material has a solid state photoluminescent efficiency greater than or equal to 60%. Devices including optical materials and/or optical components and methods are also disclosed.
摘要:
A particle comprising nanoparticles encapsulated within a host material is disclosed, wherein the particle includes a coating disposed over at least a portion of the outer surface of the particle. In certain embodiments, nanoparticles have light-emissive properties. In certain embodiments, the coating covers all or substantially all of the outer surface of the particle. The coating can comprise a resin having low oxygen permeability. In certain embodiments, the coating comprises a polyvinyl alcohol compound. In certain embodiments, the coating comprises a polyvinylidene dichloride compound. Other embodiments relate to a powder comprising a particle of the invention, a composition including a particle of the invention, a formulation including a particle of the invention, a coating comprising a particle of the invention, a method for making a particle of the invention, and products and applications including a particle of the invention. In preferred embodiments, a nanoparticle comprises a semiconductor nanocrystal.
摘要:
The invention provides an electrophoresis cassette to cast electrophoresis gels and to separate and analyze molecular components by electrophoresis. The electrophoresis cassette comprises a top plate assembly, a spacer and a bottom plate. The top plate assembly is seated to the bottom plate with the spacer there between to define a thickness of the electrophoresis cassette and to seal an outer perimeter of the assembly. The top plate assembly includes a cathode reservoir connected to a first terminal end of a central plate, and an anode reservoir connected to a second terminal end of the central plate. When the electrophoresis cassette is assembled, the cathode and anode reservoirs are in alignment with the first and second terminal ends of the central plate to facilitate formation of leak-proof seals between the reservoirs and the assembly components. An embodiment of the invention provides a plurality of sample wells incorporated with the cathode reservoir and constructed of rigid, electrically non-conducting material to provide a hard-well sample loading site for uniform and consistent sample injection. Another embodiment provides a mechanical biasing system incorporated with a cathode reservoir body to bias the assembly components together. The invention also provides a method of casting electrophoresis gels with the electrophoresis cassette provided herein.