Abstract:
Polycrystalline diamond bodies having an annular region of diamond grains and a core region of diamond grains and methods of making the same are disclosed. In one embodiment, a polycrystalline diamond body (120) includes an annular region (142) of inter-bonded diamond grains having a first characteristic property and a core region (140) of inter-bonded diamond grains bonded to the annular region and having a second characteristic property that differs from the first characteristic property. The annular region decreases in thickness from a perimeter surface of the polycrystalline diamond body towards a centerline axis.
Abstract:
Polycrystalline diamond cutting elements having enhanced thermal stability, drill bits incorporating the same, and methods of making the same are disclosed herein. In one embodiment, a cutting element includes a substrate having a metal carbide and a polycrystalline diamond body bonded to the substrate. The polycrystalline diamond body includes a plurality of diamond grains bonded to adjacent diamond grains by diamond-to-diamond bonds and a plurality of interstitial regions positioned between adjacent diamond grains. At least a portion of the plurality of interstitial regions comprise lead or lead alloy, a catalyst material, metal carbide, or combinations thereof. At least a portion of the plurality of interstitial regions comprise lead or lead alloy that coat portions of the adjacent diamond grains such that the lead or lead alloy reduces contact between the diamond and the catalyst.
Abstract:
Provided are bearing assemblies including one or more substrate assemblies, such as thrust bearing assemblies. The substrate assemblies include a bearing element fixed to a substrate. The bearing elements are formed from a thermally stable material such as a ceramic-bonded diamond composite. Methods for manufacturing the bearing assemblies are also provided.
Abstract:
A superabrasive cutter and a method of making the superabrasive cutter are disclosed. The superabrasive cutter may comprise a plurality of polycrystalline superabrasive particles and about 0.01% to about 4% by weight of the superabrasive particles of a dopant as evaluated prior to a high pressure/high temperature process. The dopant may be immiscible with a catalyst for forming the polycrystalline superabrasive particles.
Abstract:
A cutting element and a method of providing the cutting element are provided. The cutting element may include a substrate, a first polycrystalline diamond zone, and a second polycrystalline diamond zone. The first polycrystalline diamond zone may be substantially free of a catalyst material. The second polycrystalline diamond zone rich in the catalyst material may be bonded to the substrate along an interface. The second polycrystalline diamond zone may be bonded to the first polycrystalline diamond zone along an effective transition zone. The effective transition zone may have a plurality of irregular projections toward the first polycrystalline diamond zone and the second polycrystalline diamond zone.
Abstract:
A superabrasive cutter and a method of making the superabrasive cutter are disclosed. The superabrasive cutter may comprise a plurality of polycrystalline superabrasive particles and about 0.01% to about 4% by weight of the superabrasive particles of a metal or metal alloy. The metal or the metal alloy may be immiscible with a catalyst for forming the polycrystalline superabrasive particles.
Abstract:
A method of testing a superabrasive cutter is disclosed. The method of testing a superabrasive cutter may comprise steps of choosing a set of tests with various parameters under which to test superabrasive cutter; comparing to a reference chart; and deciding whether the superabrasive cutter fits an application for a high probability of performance success.
Abstract:
A system and a method of testing a superabrasive cutter are disclosed. The system of testing a superabrasive cutter may comprise a spinning wheel holding the superabrasive cutter; a rock feeding into a rotation of the superabrasive cutter on the spinning wheel; and a plurality of sensors operably attaching to the spinning wheel and the rock to detect properties of the superabrasive cutter. The method of testing a superabrasive cutter may comprise steps of attaching a superabrasive cutter to a spinning wheel; moving a rock into a rotation of the superabrasive cutter on the spinning wheel; and communicably coupling a first sensor to the superabrasive cutter.
Abstract:
A cutting element and a method of providing the cutting element are provided. The cutting element may comprise a substrate, a first polycrystalline diamond zone, and a second polycrystalline diamond zone. The first polycrystalline diamond zone may have substantially free of a catalyst material. The second polycrystalline diamond zone rich in the catalyst material may be bonded to the substrate along an interface. The second polycrystalline diamond zone may be bonded to the first polycrystalline diamond zone along an effective transition zone. The effective transition zone may have a plurality of irregular projections toward the first polycrystalline diamond zone and the second polycrystalline diamond zone.
Abstract:
A cemented tungsten carbide body is formed by mixing a tungsten carbide powder and a cobalt powder together to form a powder mixture. The tungsten carbide powder makes up greater than or equal to 80 weight percent of the powder mixture, while the cobalt binder powder makes up about 1.5 weight percent to about 20 weight percent of the powder mixture. Next, the powder mixture is compacted to form a green compact, and a boron nitride coating is applied to a surface of the green compact to form a coated compact. The coated compact is sintered at a temperature sufficient to melt the cobalt powder, such that boron from the boron nitride coating diffuses into the compact and creates a gradient of metallic cobalt and boron extending inward from the surface. The metallic cobalt content increases from the surface inward, while the boron content decreases from the surface inward.